7 research outputs found

    Indirect in situ bioleaching is an emerging tool for accessing deeply buried metal reserves, but can the process be managed? – A case study of copper leaching at 1 km depth

    Get PDF
    Copper is a strategic raw material widely needed for electrification. One possibility to diversify the supply to answer the market demand is to produce copper with in situ technology. In this study, feasibility of in situ bioleaching of copper was tested in a deep subsurface deposit. During in situ bioleaching of copper, copper is leached using a biologically produced ferric iron solution, which is recycled back to the in situ reactor after valuable metals are recovered, after which the solution is re-oxidized by iron-oxidizing microorganisms (IOB). A rock reactor was constructed in the Rudna Mine at ca 1 km depth and the microbiology and hydrogeochemistry of the water circulated through the reactor after blasting for fracturing the rock was monitored over time. The test site was rich in carbonates requiring large quantities of acid to remove the buffering capacity. The bacterial, archaeal and fungal communities in the rock reactor were monitored and characterized by quantitative polymerase chain reaction (qPCR) and amplicon sequencing, and acidophilic, iron oxidizing activity of the microbial communities during operation and pre- and post-operation phases was tested by cultivation. No acidophilic iron oxidizers were detected in the water samples during construction of the pilot reactor. Acidic leaching solution originating from the underground ferric iron generating bioreactor (FIGB) contained acidophilic IOB, which were also viable after the leach liquor was returned from the rock reactor. In the post-operation phase, when the rock reactor was neutralized with CaCO3/Ca(HCO3)2 solution, to inhibit the acidophilic IOB, iron oxidizing microorganisms were still present in the effluent solution one week after termination of the leaching and start of neutralization. Therefore, the post-operation phase needs further attention to completely stop the activity of added microorganisms. Copper was abundantly leached during the acid wash and leaching phases, proving the concept of deep in situ bioleaching.Peer reviewe

    Research on the Possibility of Sorting Application for Separation of Shale and/or Gangue from the Feed of Rudna Concentrator

    Get PDF
    Shale, which occurs in the copper ore deposits belonging to KGHM Polska Miedź S.A., is the reason for a number of difficulties, at the stage of not only processing but also smelting. Gangue, in turn, getting in a feed during mining is a useless load of a concentrator and also contributes to lowering concentrating indexes. Its content in a feed is being evaluated at 15-30%. The multiple attempts to solve those issues by the methods of conventional mineral processing or even selective mining failed. In the range of work, research on the lithological composition and Cu content in 300 individual particles (selected from Rudna feed) have been carried out. Using those results, the simulation of gangue separation with an application of sorting have been done. The positive results have been received: introduction of a sorting operation causes, theoretically, removing of approximately 20-30% sorting feed mass as final tailings with Cu losses not bigger than 5-10%. It means that the capacity of Rudna concentrator can be increased proportionally. To confirm those results, industrial sorting trials are necessary, when appropriate sorters will become available. Additionally, one should take also into account that the finest classes of feed (-12.5 mm) could not be concentrated in a sorter. In the range of work, the preliminary tests of the industrial sorter (PRO Secondary Color NIR) for separation of the shale concentrate from Rudna concentrator feed have been carried out. The shale concentrates were received both from 12.5-20 mm class and +20 mm class. The concentrates produced from the coarse classes, for both technological sides had shale content at the level of 48-49%, with recovery of 52.9-60%. In the case of the finer class, shale content in the concentrates for both technological sides amounts to 30.9-35%, at the slightly lower recoveries than for coarse classes. Cu and Corg behavior in the sorting process were checked also, however, the results turned out to be not very interesting. Because the results of shale concentrate production by sorting have a significant potential for improvement, the further researches in this direction have been recommended, however, making them start off from elaboration of a technology for shale concentrate processing and calculation of a total balance of a concentrating process involving flotation and separation

    Impeller Radial Velocity and Air Flow Rate Influence on Copper Rougher Flotation Recovery

    No full text
    A rougher flotation study has been done to analyze the effects of copper feed mineralogy, air flow rate and impeller radial velocity on metallurgical performance. During the performance testing the trials were exposed to metallurgical examining and computerised mineral analysis to establish a size-by-size mineralogy. The mineralogical and metallurgical information was compared to the material balance for rougher flotation results. These samples showed that copper recovery optimization should focus on the losses of liberated Cu-minerals and how they are associated with fine particles. The result of variable impeller radial velocity for each flotation cell cascade on metallurgical performance has been explored on a known-sized and an unknown-sized base, to gauge the input from the fine particles. An industrial application is discussed in this paper, and it validates that divergence of the impeller radial velocity and air flow has positive influence on the recovery

    Organosolv lignin particles as an ecological reagent in the Kupfershiefer copper ore flotation

    No full text
    Mineral separation relies heavily on the process of flotation. This study explored the feasibility of using organosolv lignin nanoparticles and microparticles (OLP) as a greener alternative to xanthates in the flotation process for mineral separation. Xanthates are widely used but pose environmental and health risks. The efficiency of OLP as collectors was compared to collectorless flotation, resulting in approximately 50% copper recovery, indicating that OLP may not be a suitable replacement for xanthates. Further tests were conducted using a mixture of xanthates and OLP (birch nano and spruce micro) with varying substitution levels (20%, 30%, and 40%). The results demonstrated that increasing the dosage of OLP led to a decrease in flotation efficiency for copper. TOC analysis of the products revealed that high dosages (160 g/t) of birch nano and spruce micro as sole collectors showed beneficiation and selective recovery against copper. While OLPs did not prove effective as collectors, the study highlights their potential as substitutes for maltodextrin in selective flotation of the final concentrate. Two out of four tested OLPs were recommended for pilot scale testing.Validerad;2023;NIvå 2;2023-11-14 (marisr);Funder: EIT RawMaterials GmbH;License fulltext: CC BY</p

    Organosolv lignin particles as an ecological reagent in the Kupfershiefer copper ore flotation

    No full text
    Mineral separation relies heavily on the process of flotation. This study explored the feasibility of using organosolv lignin nanoparticles and microparticles (OLP) as a greener alternative to xanthates in the flotation process for mineral separation. Xanthates are widely used but pose environmental and health risks. The efficiency of OLP as collectors was compared to collectorless flotation, resulting in approximately 50% copper recovery, indicating that OLP may not be a suitable replacement for xanthates. Further tests were conducted using a mixture of xanthates and OLP (birch nano and spruce micro) with varying substitution levels (20%, 30%, and 40%). The results demonstrated that increasing the dosage of OLP led to a decrease in flotation efficiency for copper. TOC analysis of the products revealed that high dosages (160 g/t) of birch nano and spruce micro as sole collectors showed beneficiation and selective recovery against copper. While OLPs did not prove effective as collectors, the study highlights their potential as substitutes for maltodextrin in selective flotation of the final concentrate. Two out of four tested OLPs were recommended for pilot scale testing

    An update on possibilities of metals recovery from Polish copper ores by biotechnology. Project Ecometals

    Get PDF
    The possibilities of metals recovery from copper ores with the biotechnological methods are widely known. The methods consist in bioleaching of copper ores, copper concentrates and byproducts of their production, as well as metals recovery from leaching solutions. Biohydrometallurgical methods were tested for years to be applied at KGHM Polska Miedź S.A., in order to improve efficiency of copper production. Several different research units worked on the topic, and the most significant and wide range initiatives in this area are mentioned in this article. One of the initiatives is an ongoing German and French Ecometals project. KGHM Polska Miedź S.A. and KGHM Cuprum Ltd. Research and Development Centre are this project Partners. In the frame of the project different metals bearing materials (ores, concentrates and tailings) are tested. Among them three lithological types of the copper ore from Rudna mine and the copper concentrate from Lubin concentrator are used for studies. The article gives a general overview of these activities, with the main focus on results of bioleaching studies of selected materials, conducted by KGHM Cuprum. In these studies sandstone and shale, as well as so called “shale concentrate” (containing 39% of the shale) were used for experiments, and possibilities of their bioleaching were evaluated

    An update on possibilities of metals recovery from Polish copper ores by biotechnology. Project Ecometals

    No full text
    The possibilities of metals recovery from copper ores with the biotechnological methods are widely known. The methods consist in bioleaching of copper ores, copper concentrates and byproducts of their production, as well as metals recovery from leaching solutions. Biohydrometallurgical methods were tested for years to be applied at KGHM Polska Miedź S.A., in order to improve efficiency of copper production. Several different research units worked on the topic, and the most significant and wide range initiatives in this area are mentioned in this article. One of the initiatives is an ongoing German and French Ecometals project. KGHM Polska Miedź S.A. and KGHM Cuprum Ltd. Research and Development Centre are this project Partners. In the frame of the project different metals bearing materials (ores, concentrates and tailings) are tested. Among them three lithological types of the copper ore from Rudna mine and the copper concentrate from Lubin concentrator are used for studies. The article gives a general overview of these activities, with the main focus on results of bioleaching studies of selected materials, conducted by KGHM Cuprum. In these studies sandstone and shale, as well as so called “shale concentrate” (containing 39% of the shale) were used for experiments, and possibilities of their bioleaching were evaluated
    corecore