9,574 research outputs found
AMBER and CRIRES observations of the binary sgB[e] star HD 327083: evidence of a gaseous disc traced by CO bandhead emission
HD 327083 is a sgB[e] star that forms a binary system with an orbital
semi-major axis of ~1.7 AU. Our previous observations using the VLTI and AMBER
in the medium resolution K-band mode spatially resolved the environment of HD
327083. The continuum visibilities obtained indicate the presence of a
circumbinary disc. CO bandhead emission was also observed. However, due to the
limited spectral resolution of the previous observations, the kinematic
structure of the emitting material was not constrained. In this paper, we
address this and probe the source of the CO emission with high spectral
resolution and spatial precision. We have observed HD 327083 with high spectral
resolution (25 & 6 km/s) using AMBER and CRIRES. The observations are compared
to kinematical models to constrain the source of the emission. It is shown that
the CO bandhead emission can be reproduced using a model of a Keplerian disc
with an inclination and size consistent with our previous VLTI observations.
The model is compared to AMBER differential phase measurements, which have a
precision as high as 30-micro-arcseconds. A differential phase signal
corresponding to 0.15 milli-arcseconds (~5 sigma) is seen over the bandhead
emission, which is in excellent agreement with the model that fits the CRIRES
observations. In comparison, a model of an equatorial outflow, as envisaged in
the standard sgB[e] scenario, does not reproduce the observations well. The
excellent agreement between the disc model and observations in the spatial and
spectral domains is compelling evidence that the CO bandhead emission of HD
327083 originates in a circumbinary Keplerian disc. In contrast, the model of
an equatorial outflow cannot reproduce the observations well. This suggests
that the standard sgB[e] scenario is not applicable to HD 327083, which
supports the hypothesis that the B[e] behaviour of HD 327083 is due to binarity
(ABRIDGED).Comment: Accepted for publication in A&
Off-shell N=2 tensor supermultiplets
A multiplet calculus is presented for an arbitrary number n of N=2 tensor
supermultiplets. For rigid supersymmetry the known couplings are reproduced. In
the superconformal case the target spaces parametrized by the scalar fields are
cones over (3n-1)-dimensional spaces encoded in homogeneous SU(2) invariant
potentials, subject to certain constraints. The coupling to conformal
supergravity enables the derivation of a large class of supergravity
Lagrangians with vector and tensor multiplets and hypermultiplets. Dualizing
the tensor fields into scalars leads to hypermultiplets with hyperkahler or
quaternion-Kahler target spaces with at least n abelian isometries. It is
demonstrated how to use the calculus for the construction of Lagrangians
containing higher-derivative couplings of tensor multiplets. For the
application of the c-map between vector and tensor supermultiplets to
Lagrangians with higher-order derivatives, an off-shell version of this map is
proposed. Various other implications of the results are discussed. As an
example an elegant derivation of the classification of 4-dimensional
quaternion-Kahler manifolds with two commuting isometries is given.Comment: 36 page
Consistent truncation of d = 11 supergravity on AdS_4 x S^7
We study the system of equations derived twenty five years ago by B. de Wit
and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the
consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to
gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7)
symmetry, we determine the most general solution to this system at each point
on the coset space E_7(7)/SU(8). We show that invariants of the general
solution are given by the fluxes in eleven-dimensional supergravity. This
allows us to both clarify the explicit non-linear ansatze for the fluxes given
previously and to fill a gap in the original proof of the consistent
truncation. These results are illustrated with several examples.Comment: 41 pages, typos corrected, published versio
N=2 Conformal Superspace in Four Dimensions
We develop the geometry of four dimensional N=2 superspace where the entire
conformal algebra of SU(2,2|2) is realized linearly in the structure group
rather than just the SL(2,C) x U(2)_R subgroup of Lorentz and R-symmetries,
extending to N=2 our prior result for N=1 superspace. This formulation
explicitly lifts to superspace the existing methods of the N=2 superconformal
tensor calculus; at the same time the geometry, when degauged to SL(2,C) x
U(2)_R, reproduces the existing formulation of N=2 conformal supergravity
constructed by Howe.Comment: 43 pages; v2 references added, acknowledgments update
Probing discs around massive young stellar objects with CO first overtone emission
We present high resolution (R~50,000) spectroastrometry over the CO 1st
overtone bandhead of a sample of seven intermediate/massive young stellar
objects. These are primarily drawn from the red MSX source (RMS) survey, a
systematic search for young massive stars which has returned a large, well
selected sample of such objects. The mean luminosity of the sample is
approximately 5 times 10^4 L_\odot, indicating the objects typically have a
mass of ~15 solar masses. We fit the observed bandhead profiles with a model of
a circumstellar disc, and find good agreement between the models and
observations for all but one object. We compare the high angular precision
(0.2-0.8 mas) spectroastrometric data to the spatial distribution of the
emitting material in the best-fitting models. No spatial signatures of discs
are detected, which is entirely consistent with the properties of the
best-fitting models. Therefore, the observations suggest that the CO bandhead
emission of massive young stellar objects originates in small-scale disks, in
agreement with previous work. This provides further evidence that massive stars
form via disc accretion, as suggested by recent simulations.Comment: Accepted for publication in MNRA
Black hole entropy functions and attractor equations
The entropy and the attractor equations for static extremal black hole
solutions follow from a variational principle based on an entropy function. In
the general case such an entropy function can be derived from the reduced
action evaluated in a near-horizon geometry. BPS black holes constitute special
solutions of this variational principle, but they can also be derived directly
from a different entropy function based on supersymmetry enhancement at the
horizon. Both functions are consistent with electric/magnetic duality and for
BPS black holes their corresponding OSV-type integrals give identical results
at the semi-classical level. We clarify the relation between the two entropy
functions and the corresponding attractor equations for N=2 supergravity
theories with higher-derivative couplings in four space-time dimensions. We
discuss how non-holomorphic corrections will modify these entropy functions.Comment: 21 pages,LaTeX,minor change
The circumstellar disk, envelope, and bi-polar outflow of the Massive Young Stellar Object W33A
The Young Stellar Object (YSO) W33A is one of the best known examples of a
massive star still in the process of forming. Here we present Gemini North
ALTAIR/NIFS laser-guide star adaptive-optics assisted K-band integral-field
spectroscopy of W33A and its inner reflection nebula. In our data we make the
first detections of a rotationally-flattened outer envelope and fast bi-polar
jet of a massive YSO at near-infrared wavelengths. The predominant spectral
features observed are Br-gamma, H_2, and a combination of emission and
absorption from CO gas. We perform a 3-D spectro-astrometric analysis of the
line emission, the first study of its kind. We find that the object's Br-gamma
emission reveals evidence for a fast bi-polar jet on sub-milliarcsecond scales,
which is aligned with the larger-scale outflow. The hybrid CO features can be
explained as a combination of hot CO emission arising in a disk close to the
central star, while cold CO absorption originates in the cooler outer envelope.
Kinematic analysis of these features reveals that both structures are rotating,
and consistent with being aligned perpendicularly to both the ionised jet and
the large-scale outflow. Assuming Keplerian rotation, we find that the
circumstellar disk orbits a central mass of >10Msun, while the outer envelope
encloses a mass of ~15Msun. Our results suggest a scenario of a central star
accreting material from a circumstellar disk at the centre of a cool extended
rotating torus, while driving a fast bi-polar wind. These results therefore
provide strong supporting evidence for the hypothesis that the formation
mechanism for high-mass stars is qualitatively similar to that of low-mass
stars.Comment: 13 pages, 18 figs. Accepted for publication in MNRA
More on Membranes in Matrix Theory
We study noncompact and static membrane solutions in Matrix theory. Demanding
axial symmetry on a membrane embedded in three spatial dimensions, we obtain a
wormhole solution whose shape is the same with the catenoidal solution of
Born-Infeld theory. We also discuss another interesting class of solutions,
membranes embedded holomorphically in four spatial dimensions, which are 1/4
BPS.Comment: 7 pages, LaTeX; expanded to treat matrix membrane solutions with
electric flux, equivalently fundamental strings; to appear in Phys. Rev.
On BPS bounds in D=4 N=2 gauged supergravity II: general matter couplings and black hole masses
We continue the analysis of BPS bounds started in arXiv:1110.2688, extending
it to the full class of N=2 gauged supergravity theories with arbitrary vector
and hypermultiplets. We derive the general form of the asymptotic charges for
asymptotically flat (M_4), anti-de Sitter (AdS_4), and magnetic anti-de Sitter
(mAdS_4) spacetimes. Some particular examples from black hole physics are given
to explicitly demonstrate how AdS and mAdS masses differ when solutions with
non-trivial scalar profiles are considered.Comment: 21 pages; v2 added reference, published version; v3 minor correction
Supersymmetry on AdS3 and AdS4
We consider a supersymmetric extension of the algebra associated with three
and four dimensional Anti de Sitter space. A representation of the
supersymmetry operators in superspace is given. Supersymmetry invariant models
are constructed for the superspace associated with AdS3.Comment: 14 pages, no figures. Final published version. Now includes a
discussion of the relation of our approach to previous work on supersymmetry
in AdS space
- …