15 research outputs found

    Разработка и изготовление действующей модели роликовой транспортной системы для ГПС

    Full text link
    There is increased interest in the potential protective role of dietary Ca in the development of metabolic disorders related to the metabolic syndrome. Ca-induced intestinal precipitation of fatty acids and bile acids as well as systemic metabolic effects of Ca on adipose tissue is proposed to play a causal role. In this experiment, we have studied all these aspects to validate the suggested protective effect of Ca supplementation, independent of other dietary changes, on the development of diet-induced obesity and insulin resistance. In our diet intervention study, C57BL/6J mice were fed high-fat diets differing in Ca concentrations (50 v. 150 mmol/kg). Faecal excretion analyses showed an elevated precipitation of intestinal fatty acids (2.3-fold;

    The effect of probiotic Lactobacilli strains, inulin-type fructans and oligofructose on gene expression profiles in intestinal Caco-2 cells

    No full text
    Background: Beneficial microbes can be actors in maintaining or stimulating barrier function, and may counteract pathogen-infection. Lactobacilli are particularly recognized for enhancing intestinal barrier function and to confer protective effects against multiresistant pathogens. Various L. acidophilus strains support intestinal immune barrier function and have been shown to improve resistance to pathogens. Although less extensively studied than beneficial bacteria, other food-based ingredients that can contribute to strengthening barrier function are dietary fibers. For instance, inulin and fructooligosaccharides (FOS) have recently been shown to enhance barrier function and protect against barrier dysfunction. Effects of these ingredients on intestinal barrier function were evaluated by quantifying regulation of gene expression by microarray. Methods: Caco-2 cells were incubated with probiotic strains or inulin-type fibers for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. Results: Only L. acidophilus modulated a group of 26 genes related to tight-junctions. Inulin-type fructans, L. brevis W63 and L. casei W56 regulated other genes, unrelated to tight junctions. L. acidophilus also had unique effects on a group of 6 genes regulating epithelial phenotype towards follicle-associated epithelium. L. acidophilus W37 was therefore selected for a challenge with STM and prevented STM-induced barrier disruption and decreased secretion of IL-8. L. acidophilus W37 increases TEER and can protect against STM induced disruption of gut epithelial cells integrity in vitro. Conclusion: Our results suggest that selection of specific bacterial strains for enforcing barrier function may be a promising strategy to reduce or prevent STM infections

    The effect of probiotic Lactobacilli strains, inulin-type fructans and oligofructose on gene expression profiles in intestinal Caco-2 cells

    No full text
    Background: Beneficial microbes can be actors in maintaining or stimulating barrier function, and may counteract pathogen-infection. Lactobacilli are particularly recognized for enhancing intestinal barrier function and to confer protective effects against multiresistant pathogens. Various L. acidophilus strains support intestinal immune barrier function and have been shown to improve resistance to pathogens. Although less extensively studied than beneficial bacteria, other food-based ingredients that can contribute to strengthening barrier function are dietary fibers. For instance, inulin and fructooligosaccharides (FOS) have recently been shown to enhance barrier function and protect against barrier dysfunction. Effects of these ingredients on intestinal barrier function were evaluated by quantifying regulation of gene expression by microarray. Methods: Caco-2 cells were incubated with probiotic strains or inulin-type fibers for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. Results: Only L. acidophilus modulated a group of 26 genes related to tight-junctions. Inulin-type fructans, L. brevis W63 and L. casei W56 regulated other genes, unrelated to tight junctions. L. acidophilus also had unique effects on a group of 6 genes regulating epithelial phenotype towards follicle-associated epithelium. L. acidophilus W37 was therefore selected for a challenge with STM and prevented STM-induced barrier disruption and decreased secretion of IL-8. L. acidophilus W37 increases TEER and can protect against STM induced disruption of gut epithelial cells integrity in vitro. Conclusion: Our results suggest that selection of specific bacterial strains for enforcing barrier function may be a promising strategy to reduce or prevent STM infections

    The effect of onion exposure on gene expression profiles in intestinal Caco-2 cells

    No full text
    Background: Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, in this study we explored the applicability of an in vitro model, namely human intestinal Caco-2 cells, to study the effect of food compounds on (intestinal) health. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into their mode of actions in the intestinal cells. Methods: Caco-2 cells were incubated with in vitro digested onion extracts for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. To identify onion-induced gene expression profiles in Caco-2 cells, digested yellow onion and white onion samples were compared to a digest control samples. Results: We found that yellow onion (n=5586, p<0.05) had a more pronounced effect on gene expression than white onion (n=3688, p<0.05). However, a substantial number of genes (n=3281, p<0.05) were affected by both onion variants in the same direction. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Conclusion: our data indicate that the in vitro Caco-2 intestinal model can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies

    Programmeringsstudie 'Gezonde, duurzame en groene keuzen'

    No full text
    De motivatie om efficiënt veel voedsel te kunnen produceren was het ‘nooit meer honger’-idee van na de tweede wereldoorlog met z’n hongerwinter. Daar plukken we nog altijd de vruchten van: zoete, een landbouw en voedingsmiddelenindustrie die aan de wereldtop meespelen, en bittere, een gemiddeld te dikke bevolking met een veelheid aan welvaartsziekten met daarnaast enkele negatieve gevolgen voor de natuur en het klimaat

    Phenotyping the effect of diet on non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is associated with the growing incidence of metabolic syndrome. Diet is an important contributor to the pathogenesis of NAFLD. In this review, we focused on recent publications reporting on the effect of macro- and micronutrients on development and progression of NAFLD. In general, saturated fat and fructose seem to stimulate hepatic lipid accumulation and progression into NASH, whereas unsaturated fat, choline, antioxidants, and high-protein diets rich in isoflavones seem to have a more preventive effect. Knowledge of the underlying mechanisms by which diet affects NAFLD is expanding, not in the least due to innovative techniques, such as genomics tools that provide detailed comprehensive information on a large high-throughput scale. Although most nutrients seem to interfere with the balance between hepatic de novo lipogenesis (endogenous synthesis of fatty acids) and lipid oxidation (burning fat for energy), there are also indications that diet can trigger or prevent hepatic lipid accumulation by influencing the interaction between liver, gut, and adipose tissue. This review now gives a current detailed overview of diet-mediated mechanisms underlying NAFLD development and progression and summarizes recent results of genomics (transcriptomics, proteomics and metabolomics) studies that contribute to improved staging, monitoring and understanding of NAFLD pathophysiology

    The effect of probiotic Lactobacilli strains, inulin-type fructans and oligofructose on gene expression profiles in intestinal Caco-2 cells

    No full text
    Background: Beneficial microbes can be actors in maintaining or stimulating barrier function, and may counteract pathogen-infection. Lactobacilli are particularly recognized for enhancing intestinal barrier function and to confer protective effects against multiresistant pathogens. Various L. acidophilus strains support intestinal immune barrier function and have been shown to improve resistance to pathogens. Although less extensively studied than beneficial bacteria, other food-based ingredients that can contribute to strengthening barrier function are dietary fibers. For instance, inulin and fructooligosaccharides (FOS) have recently been shown to enhance barrier function and protect against barrier dysfunction. Effects of these ingredients on intestinal barrier function were evaluated by quantifying regulation of gene expression by microarray. Methods: Caco-2 cells were incubated with probiotic strains or inulin-type fibers for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. Results: Only L. acidophilus modulated a group of 26 genes related to tight-junctions. Inulin-type fructans, L. brevis W63 and L. casei W56 regulated other genes, unrelated to tight junctions. L. acidophilus also had unique effects on a group of 6 genes regulating epithelial phenotype towards follicle-associated epithelium. L. acidophilus W37 was therefore selected for a challenge with STM and prevented STM-induced barrier disruption and decreased secretion of IL-8. L. acidophilus W37 increases TEER and can protect against STM induced disruption of gut epithelial cells integrity in vitro. Conclusion: Our results suggest that selection of specific bacterial strains for enforcing barrier function may be a promising strategy to reduce or prevent STM infections

    An Observational Study to Evaluate the Association between Intestinal Permeability, Leaky Gut Related Markers, and Metabolic Health in Healthy Adults

    No full text
    We explored whether metabolic health is linked to intestinal permeability, using a multi-sugar (MS) permeability test, and whether intestinal permeability is correlated with the leaky gut-related markers (LGM) zonulin, LBP, and sCD14. Metabolically healthy (n = 15) and unhealthy subjects (n = 15) were recruited based on waist circumference, fasting glucose, and high-density lipoprotein cholesterol levels. Participants underwent an MS permeability test that assessed site-specific permeabilities of the gastroduodenum and small and large intestines. The test was performed with/without an acetylsalicylic acid challenge to measure and correlate the gut permeability, LGM, and metabolic health. At baseline, metabolic health showed no correlation with gut permeability. Significant correlations were found between the metabolic health parameters and LGM. In the acetyl-salicylic acid challenged MS permeability test, low-density lipoprotein cholesterol was correlated with the sucralose/erythritol ratio, reflecting the whole intestinal permeability. Correlations between most metabolic health parameters and LGM during the acetylsalicylic acid challenge were less pronounced than at baseline. In both MS permeability tests, no significant correlations were found between LGM (plasma and serum) and gut permeability. Thus, correlations between LGM and metabolic health might not be linked with paracellular gut permeability. Transcellular translocation and/or lipoprotein-related transportation is a more likely mechanism underlying the association between LGM and metabolic health

    Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice

    No full text
    Excessive intake of dietary fat is known to be a contributing factor in the development of obesity. In this study, we determined the dose-dependent effects of dietary fat on the development of this metabolic condition with a focus on changes in gene expression in the small intestine. C57BL/6J mice were fed diets with either 10, 20, 30 or 45 energy% (E%) derived from fat for four weeks (n = 10 mice/diet). We found a significant higher weight gain in mice fed the 30E% and 45E% fat diet compared to mice on the control diet. These data indicate that the main shift towards an obese phenotype lies between a 20E% and 30E% dietary fat intake. Analysis of differential gene expression in the small intestine showed a fat-dose dependent gradient in differentially expressed genes, with the highest numbers in mice fed the 45E% fat diet. The main shift in fat-induced differential gene expression was found between the 30E% and 45E% fat diet. Furthermore, approximately 70% of the differentially expressed genes were changed in a fat-dose dependent manner. Many of these genes were involved in lipid metabolism-related processes and were already differentially expressed on a 30E% fat diet. Taken together, we conclude that up to 20E% of dietary fat, the small intestine has an effective ‘buffer capacity’ for fat handling. From 30E% of dietary fat, a switch towards an obese phenotype is triggered. We further speculate that especially fat-dose dependently changed lipid metabolism-related genes are involved in development of obesit

    Adipophilin protein expression in muscle - a possible protective role against insulin resistance

    No full text
    Adipophilin is a 50 kDa protein that belongs to the PAT family (perilipin, adipophilin, TIP47, S3-12 and OXPAT), which comprises proteins involved in the coating of lipid droplets. Little is known about the functional role of adipophilin in muscle. Using the C2C12 cell line as a model, we demonstrate that palmitic acid-treated cells highly express the adipophilin protein in a dose-dependent way. Next, we show that oleic acid is a more potent inducer of adipophilin protein levels than palmitic acid. Cells treated with oleic acid have a higher adipophilin protein expression and higher triglyceride levels but less impairment of insulin signaling than cells treated with palmitic acid. Additionally, we show that peroxisome proliferator-activated receptor (PPAR)alpha, PPAR beta/delta and PPAR gamma agonists all increase the expression of the adipophilin protein in C2C12 cells. This effect was most pronounced for the PPAR alpha agonist GW7647. Furthermore, the expression of adipophilin as a 37 kDa N-terminally truncated protein is higher in the gastrocnemius than in the quadriceps of C57BL/6J mice, especially after an 8-week high-fat diet. The expression of adipophilin was higher in the muscle of mice fed a 4-week high-fat diet based on olive oil or safflower oil than in mice fed a 4-week high-fat diet based on palm oil. After 2 weeks of intervention, plasma glucose, plasma insulin and the homeostasis model assessment of insulin resistance index were lower in mice fed a 4-week high-fat diet based on olive oil or safflower oil than in mice fed a 4-week high-fat diet based on palm oil. Taken together, the results obtained in the present study indicate that adipophilin protein expression in muscle is involved in maintaining insulin sensitivit
    corecore