484 research outputs found

    Real-time profiling of organic trace gases in the planetary boundary layer by PTR-MS using a tethered balloon

    Get PDF
    A method for real-time profiling of volatile organic compounds (VOCs) was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS) as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Positive and negative artefacts (i.e. formation and loss of VOCs in the tube) were characterised in the laboratory and in the field by a set of 11 atmospherically relevant VOCs including both pure and oxygenated hydrocarbons. The only two compounds that increased or decreased when sampled through the tube were acetone (+7%) and xylene (-6%). The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal patterns of air pollutants under winter inversion conditions

    Bulk organic aerosol analysis by PTR-MS: an improved methodology for the determination of total organic mass, O:C and H:C ele- mental ratios and the average molecular formula

    Get PDF
    International audienceWe have recently shown in this journal (Müller et al., Anal. Chem. 2017, 89, 10889-10897) how a proton-transfer-reaction mass spectrometry (PTR-MS) analyzer measured particulate organic matter in urban atmospheres using the "Chemical Analysis of Aerosol Online" (CHARON) inlet. Our initial CHARON studies did not take into account fragmentation of protonated analyte molecules, which introduced a small but significant negative bias in the determination of bulk organic aerosol parameters. Herein, we studied the ionic fragmentation of 26 oxidized organic compounds typically found in atmospheric particles. This allowed us to derive a correction algorithm for the determination of the bulk organic mass concentration, m OA , the bulk-average hydrogen to carbon ratio, (H:C) bulk, the bulk-average oxygen-to-carbon, (O:C) bulk , and the bulk-average molecular formula, MF bulk. The correction algorithm was validated against AMS data using two sets of published data. Finally, we determined MF bulk of particles generated from the reaction of -pinene and ozone and compared and discussed the results in relation to the literature

    Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign

    Get PDF
    Extensive measurements of black carbon (BC) aerosol were conducted in and near the North American Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) aircraft campaign in April and June-July 2008. We identify the pathways and mechanisms of transport of BC to the Arctic from the Asian continent using these data. The concentration, transport efficiency, and measured altitude of BC over the North American Arctic were highly dependent on season and origin of air parcels, e.g., biomass burning (BB) in Russia (Russian BB) and anthropogenic (AN) in East Asia (Asian AN). Russian BB air was mainly measured in the middle troposphere and caused maximum BC concentrations at this altitude in spring. The median BC concentration and transport efficiency of the Russian BB air were 270 ng m -3 (at STP) and 80% in spring and 20 ng m-3 and 4% in summer, respectively. Asian AN air was measured most frequently in the upper troposphere, with median values of 20 ng m-3 and 13% in spring and 5 ng m-3 and 0.8% in summer. These distinct differences are explained by differences in the transport mechanisms and accumulated precipitation along trajectories (APT), which is a measure of wet removal processes during transport. The transport of Russian BB air to the Arctic was nearly isentropic with slow ascent (low APT), while Asian AN air underwent strong uplift associated with warm conveyor belts (high APT). The APT values in summer were much larger than those in spring due to the increase in humidity in summer. These results show that the impact of BC emitted from AN sources in East Asia on the Arctic was very limited in both spring and summer. The BB emissions in Russia in spring are demonstrated to be the most important sources of BC transported to the North American Arctic. Copyright 2011 by the American Geophysical Union

    Exposure to cooking emitted volatile organic compounds with recirculating and extracting ventilation solutions

    Get PDF
    Energy-efficient urban development leads to the compact design of apartments. Recirculating ventilation solutions are an attempt to minimize the space required for ventilation ducting, but more data on their performance are needed. Cooking is a major source of volatile organic compounds (VOCs) emissions. It is necessary to assess how well recirculating kitchen hoods perform in reducing the residents' exposure to cooking fumes compared to extracting hoods, and what airflow rates assure good removal efficiency. We have monitored the occupant exposure to several VOCs generated during the cooking of a model meal under different ventilation scenarios in a purpose-built test kitchen resembling the layout of a modern, open-space apartment. Time-resolved VOC emission profiles were measured using a proton transfer reaction time-of-flight mass spectrometer. The performance of activated carbon sorption-based filters for recirculating kitchen hoods in the removal of selected VOCs was also assessed. Alcohols, particularly ethanol, dominated emissions from cooking a typical Norwegian meal, but they also included acetaldehyde, acetone, carboxylic acids, and trimethylamine, among others. The use of recirculating kitchen hoods led to, on average, higher occupant exposure to VOCs compared to extracting kitchen hoods during and after cooking. This was in part due to the poor ethanol removal efficiency of the recirculating ventilation's air filters.publishedVersio

    Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS

    Get PDF
    Actinic flux, as well as aerosol chemical and optical properties, were measured aboard the NASA DC-8 aircraft during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) mission in Spring and Summer 2008. These measurements were used in a radiative transfer code to retrieve spectral (350-550 nm) aerosol single scattering albedo (SSA) for biomass burning plumes encountered on 17 April and 29 June. Retrieved SSA values were subsequently used to calculate the absorption Angstrom exponent (AAE) over the 350-500 nm range. Both plumes exhibited enhanced spectral absorption with AAE values that exceeded 1 (6.78 ± 0.38 for 17 April and 3.34 ± 0.11 for 29 June). This enhanced absorption was primarily due to organic aerosol (OA) which contributed significantly to total absorption at all wavelengths for both 17 April (57.7%) and 29 June (56.2%). OA contributions to absorption were greater at UV wavelengths than at visible wavelengths for both cases. Differences in AAE values between the two cases were attributed to differences in plume age and thus to differences in the ratio of OA and black carbon (BC) concentrations. However, notable differences between AAE values calculated for the OA (AAEOA) for 17 April (11.15 ± 0.59) and 29 June (4.94 ± 0.19) suggested differences in the plume AAE values might also be due to differences in organic aerosol composition. The 17 April OA was much more oxidized than the 29 June OA as denoted by a higher oxidation state value for 17 April (+0.16 vs. -0.32). Differences in the AAEOA, as well as the overall AAE, were thus also possibly due to oxidation of biomass burning primary organic aerosol in the 17 April plume that resulted in the formation of OA with a greater spectral-dependence of absorption. © Author(s) 2012. CC Attribution 3.0 License

    Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent

    Get PDF
    We evaluate the impact of transport from midlatitudes on aerosol number concentrations in the accumulation mode (light-scattering particles (LSP) with diameters >180 nm) in the Arctic during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. We focus on transport from the Asian continent. We find marked contrasts in the number concentration (NLSP), transport efficiency (TE N-LSP, the fraction transported from sources to the Arctic), size distribution, and the chemical composition of aerosols between air parcels from anthropogenic sources in East Asia (Asian AN) and biomass burning sources in Russia and Kazakhstan (Russian BB). Asian AN air had lower NLSP and TEN-LSP (25 cm-3 and 18% in spring and 6.2 cm-3 and 3.0% in summer) than Russian BB air (280 cm-3 and 97% in spring and 36 cm-3 and 7.6% in summer) due to more efficient wet scavenging during transport from East Asia. Russian BB in this spring is the most important source of accumulation-mode aerosols over the Arctic, and BB emissions are found to be the primary source of aerosols within all the data in spring during ARCTAS. On the other hand, the contribution of Asian AN transport had a negligible effect on the accumulation-mode aerosol number concentration in the Arctic during ARCTAS. Compared with background air, NLSP was 2.3-4.7 times greater for Russian BB air but 2.4-2.6 times less for Asian AN air in both spring and summer. This result shows that the transport of Asian AN air decreases aerosol number concentrations in the Arctic, despite the large emissions of aerosols in East Asia. The very low aerosol number concentrations in Asian AN air were caused by wet removal during vertical transport in association with warm conveyor belts (WCBs). Therefore, this cleansing effect will be prominent for air transported via WCBs from other midlatitude regions and seasons. The inflow of clean midlatitude air can potentially have an important impact on accumulation-mode aerosol number concentrations in the Arctic. Copyright 2011 by the American Geophysical Union
    corecore