185 research outputs found

    The use and re-use of unsustainable groundwater for irrigation: A global budget

    Get PDF
    Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted by reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by backsim600 km3 yr−1. These findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture

    Lorentz Invariant Superluminal Tunneling

    Get PDF
    It is shown that superluminal optical signalling is possible without violating Lorentz invariance and causality via tunneling through photonic band gaps in inhomogeneous dielectrics of a special kind.Comment: 10 pages revtex, no figure, more discussions added, submitted to Phys. Rev.

    Электрооборудование и электропривод ротора буровой установки

    Get PDF
    Цель работы - разработка и исследование двухзонного электропривода ротора буровой установки. В работе выбраны элементы силовой цепи, определены оптимальные параметры настройки регуляторов системы, рассчитаны статические и динамические характеристики, определены качественные показатели. В результате исследования установлено, что разработанная система соответствует технологическим и техническим требованиям.The purpose of the work is to develop and study a two-zone electric drive of the drilling rig rotor. In the operation, elements of the power circuit are selected, optimal parameters of system regulators are determined, static and dynamic characteristics are calculated, qualitative indicators are determined. As a result of the study, it was found that the developed system meets the technological and technical requirements

    Risks of pregnancy and birth in obese primiparous women: an analysis of German perinatal statistics

    Get PDF
    PURPOSE: To compare risks of pregnancy and birth in obese (body mass index, BMI ≥ 30) and normal weight women (BMI 18.5–24.99) giving birth to their first child. METHODS: We analysed data of 243,571 pregnancies in primiparous women from the German perinatal statistics of 1998–2000. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) for selected pregnancy and birth risks. ORs were adjusted for the confounding factors age, smoking status, single mother status, and maternal education. RESULTS: Obesity during pregnancy is common in primiparous women (n = 19,130; 7.9% of all cases) and it is significantly associated with a number of risks of pregnancy and birth, including diabetes [OR 3.71 (95% CI 2.93; 4.71); p < 0.001], hypertension [OR 8.44 (7.91; 9.00); p < 0.001], preecalmpsia/eclampsia [OR 6.72 (6.30; 7.17); p < 0.001], intraamniotic infection [OR 2.33 (2.05; 2.64); p < 0.001], birth weight ≥4,000 g [OR 2.16 (2.05; 2.28); p < 0.001], and an increased rate of Caesarean section [OR 2.23 (2.15; 2.30); p < 0.001]. Some risks were less frequent in the obese such as cervical incompetence [OR 0.55 (0.48; 0.63); p < 0.001] and preterm labour [OR 0.47 (0.43; 0.51); p < 0.001]. CONCLUSIONS: Obesity during pregnancy is an important clinical problem in primiparous women because it is common and it is associated with a number of risks of pregnancy and birth. Because of these increased risks, obese women need special attention clinically during the course of their first pregnancy. Weight reduction before the first pregnancy is generally indicated in obese women to prevent the above-mentioned complications of pregnancy and birth

    Comparing projections of future changes in runoff and water resources from hydrological and ecosystem models in ISI-MIP

    Get PDF
    Projections of future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Intercomparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed. Projections of change from the baseline period (1981–2010) to the future (2070–2099) from a number of different ecosystems and hydrological models were studied. The differences between projections from the two types of model were looked at globally and regionally. Typically, across different regions the ecosystem models tended to project larger increases and smaller decreases in runoff than the hydrological models. However, the differences varied both regionally and seasonally. Sensitivity experiments were also used to investigate the contributions of varying CO2 and allowing vegetation distribution to evolve on projected changes in runoff. In two out of four models which had data available from CO2 sensitivity experiments, allowing CO2 to vary was found to increase runoff more than keeping CO2 constant, while in two models runoff decreased. This suggests more uncertainty in runoff responses to elevated CO2 than previously considered. As CO2 effects on evapotranspiration via stomatal conductance and leaf-area index are more commonly included in ecosystems models than in hydrological models, this may partially explain some of the difference between model types. Keeping the vegetation distribution static in JULES runs had much less effect on runoff projections than varying CO2, but this may be more pronounced if looked at over a longer timescale as vegetation changes may take longer to reach a new state

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    Nonorientable spacetime tunneling

    Get PDF
    Misner space is generalized to have the nonorientable topology of a Klein bottle, and it is shown that in a classical spacetime with multiply connected space slices having such a topology, closed timelike curves are formed. Different regions on the Klein bottle surface can be distinguished which are separated by apparent horizons fixed at particular values of the two angular variables that eneter the metric. Around the throat of this tunnel (which we denote a Klein bottlehole), the position of these horizons dictates an ordinary and exotic matter distribution such that, in addition to the known diverging lensing action of wormholes, a converging lensing action is also present at the mouths. Associated with this matter distribution, the accelerating version of this Klein bottlehole shows four distinct chronology horizons, each with its own nonchronal region. A calculation of the quantum vacuum fluctuations performed by using the regularized two-point Hadamard function shows that each chronology horizon nests a set of polarized hypersurfaces where the renormalized momentum-energy tensor diverges. This quantum instability can be prevented if we take the accelerating Klein bottlehole to be a generalization of a modified Misner space in which the period of the closed spatial direction is time-dependent. In this case, the nonchronal regions and closed timelike curves cannot exceed a minimum size of the order the Planck scale.Comment: 11 pages, RevTex, Accepted in Phys. Rev.

    Hallauer&apos;s Tusón: a decade of selection for tropical-to-temperate phenological adaptation in maize

    Get PDF
    Crop species exhibit an astounding capacity for environmental adaptation, but genetic bottlenecks resulting from intense selection for adaptation and productivity can lead to a genetically vulnerable crop. Improving the genetic resiliency of temperate maize depends upon the use of tropical germplasm, which harbors a rich source of natural allelic diversity. Here, the adaptation process was studied in a tropical maize population subjected to 10 recurrent generations of directional selection for early flowering in a single temperate environment in Iowa, USA. We evaluated the response to this selection across a geographical range spanning from 43.05°(WI) to 18.00°(PR) latitude. The capacity for an all-tropical maize population to become adapted to a temperate environment was revealed in a marked fashion: on average, families from generation 10 flowered 20 days earlier than families in generation 0, with a nine-day separation between the latest generation 10 family and the earliest generation 0 family. Results suggest that adaptation was primarily due to selection on genetic main effects tailored to temperature-dependent plasticity in flowering time. Genotype-by-environment interactions represented a relatively small component of the phenotypic variation in flowering time, but were sufficient to produce a signature of localized adaptation that radiated latitudinally, in partial association with daylength and temperature, from the original location of selection. Furthermore, the original population exhibited a maladaptive syndrome including excessive ear and plant heights along with later flowering; this was reduced in frequency by selection for flowering time

    The GCP molecular marker toolkit, an instrument for use in breeding food security crops

    Get PDF
    Crop genetic resources carry variation useful for overcoming the challenges of modern agriculture. Molecular markers can facilitate the selection of agronomically important traits. The pervasiveness of genomics research has led to an overwhelming number of publications and databases, which are, nevertheless, scattered and hence often difficult for plant breeders to access, particularly those in developing countries. This situation separates them from developed countries, which have better endowed programs for developing varieties. To close this growing knowledge gap, we conducted an intensive literature review and consulted with more than 150 crop experts on the use of molecular markers in the breeding program of 19 food security crops. The result was a list of effectively used and highly reproducible sequence tagged site (STS), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), and sequence characterized amplified region (SCAR) markers. However, only 12 food crops had molecular markers suitable for improvement. That is, marker-assisted selection is not yet used for Musa spp., coconut, lentils, millets, pigeonpea, sweet potato, and yam. For the other 12 crops, 214 molecular markers were found to be effectively used in association with 74 different traits. Results were compiled as the GCP Molecular Marker Toolkit, a free online tool that aims to promote the adoption of molecular approaches in breeding activities
    corecore