28 research outputs found

    Transient Receptor Potential Vanilloid 6 (TRPV6) Proteins Control the Extracellular Matrix Structure of the Placental Labyrinth

    Get PDF
    Calcium-selective transient receptor potential Vanilloid 6 (TRPV6) channels are expressed in fetal labyrinth trophoblasts as part of the feto–maternal barrier, necessary for sufficient calcium supply, embryo growth, and bone development during pregnancy. Recently, we have shown a less- compact labyrinth morphology of Trpv6-deficient placentae, and reduced Ca2+ uptake of primary trophoblasts upon functional deletion of TRPV6. Trpv6-/- trophoblasts show a distinct calcium-dependent phenotype. Deep proteomic profiling of wt and Trpv6-/- primary trophoblasts using label-free quantitative mass spectrometry leads to the identification of 2778 proteins. Among those, a group of proteases, including high-temperature requirement A serine peptidase 1 (HTRA1) and different granzymes are more abundantly expressed in Trpv6-/- trophoblast lysates, whereas the extracellular matrix protein fibronectin and the fibronectin-domain-containing protein 3A (FND3A) were markedly reduced. Trpv6-/- placenta lysates contain a higher intrinsic proteolytic activity increasing fibronectin degradation. Our results show that the extracellular matrix formation of the placental labyrinth depends on TRPV6; its deletion in trophoblasts correlates with the increased expression of proteases controlling the extracellular matrix in the labyrinth during pregnancy

    Mutations that affect the surface expression of TRPV6 are associated with the upregulation of serine proteases in the placenta of an infant

    Get PDF
    Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in an in frame stop codon (R(510)stop) that leads to a truncated, nonfunctional TRPV6 channel, and the second in a point mutation (G(660)R) that, surprisingly, does not affect the Ca(2+) permeability of TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child by coexpressing the TRPV6 G(660)R and R(510)stop mutants and combinations with wild type TRPV6. We show that both the G(660)R and R(510)stop mutant subunits are expressed and result in decreased calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an increase in the expression of proteases

    Mutations That Affect the Surface Expression of TRPV6 Are Associated with the Upregulation of Serine Proteases in the Placenta of an Infant

    Get PDF
    Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in an in frame stop codon (R510stop) that leads to a truncated, nonfunctional TRPV6 channel, and the second in a point mutation (G660R) that, surprisingly, does not affect the Ca2+ permeability of TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child by coexpressing the TRPV6 G660R and R510stop mutants and combinations with wild type TRPV6. We show that both the G660R and R510stop mutant subunits are expressed and result in decreased calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an increase in the expression of proteases

    Pain perception in mice lacking the β3 subunit of voltage-activated calcium channels

    Get PDF
    The importance of voltage-activated calcium channels in pain processing has been suggested by the spinal antinociceptive action of blockers of N- and P/Q-type calcium channels as well as by gene targeting of the α1B subunit (N-type). The accessory β3 subunits of calcium channels are preferentially associated with the α1B subunit in neurones. Here we show that deletion of the β3 subunit by gene targeting affects strongly the pain processing of mutant mice. We pinpoint this defect in the pain-related behavior and ascending pain pathways of the spinal cordin vivo and at the level of calcium channel currents and proteins in single dorsal root ganglion neurones in vitro. The pain induced by chemical inflammation is preferentially damped by deletion of β3 subunits, whereas responses to acute thermal and mechanical harmful stimuli are reduced moderately or not at all, respectively. The defect results in a weak wind-up of spinal cord activity during intense afferent nerve stimulation. The molecular mechanism responsible for the phenotype was traced to low expression of N-type calcium channels (α1B) and functional alterations of calcium channel currents in neurones projecting to the spinal cord.ThisstudywassupportedbygrantsfromtheDeutscheForschungsgemeinschaftandFondsderChemie(toV.F.).Peer reviewe

    TRPV6 alleles do not influence prostate cancer progression

    No full text
    Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Methods Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. Results We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Conclusion Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients are not significantly different. Although expression of trpv6 transcripts correlates with aggressive potential of prostate cancer, the TRPV6 genotype does not correlate with the onset of prostate cancer, with the Gleason score and the tumour stage.</p

    The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels

    Get PDF
    The mammalian sensory system is capable of discriminating thermal stimuli ranging from noxious cold to noxious heat. Principal temperature sensors belong to the TRP cation channel family, but the mechanisms underlying the marked temperature sensitivity of opening and closing ('gating') of these channels are unknown. Here we show that temperature sensing is tightly linked to voltage-dependent gating in the cold-sensitive channel TRPM8 and the heat-sensitive channel TRPV1. Both channels are activated upon depolarization, and changes in temperature result in graded shifts of their voltage-dependent activation curves. The chemical agonists menthol (TRPM8) and capsaicin (TRPV1) function as gating modifiers, shifting activation curves towards physiological membrane potentials. Kinetic analysis of gating at different temperatures indicates that temperature sensitivity in TRPM8 and TRPV1 arises from a tenfold difference in the activation energies associated with voltage-dependent opening and closing. Our results suggest a simple unifying principle that explains both cold and heat sensitivity in TRP channels.status: publishe

    IP3 Receptor-Dependent Cytoplasmic Ca2+ Signals Are Tightly Controlled by Cavβ3

    No full text
    Summary: Voltage-gated calcium channels (Cavs) are major Ca2+ entry pathways in excitable cells. Their β subunits facilitate membrane trafficking of the channel’s ion-conducting α1 pore and modulate its gating properties. We report that one β subunit, β3, reduces Ca2+ release following stimulation of phospholipase C-coupled receptors and inositol 1,4,5-trisphosphate (IP3) formation. This effect requires the SH3-HOOK domain of Cavβ3, includes physical β3/IP3 receptor interaction, and prevails when agonist-induced IP3 formation is bypassed by photolysis of caged IP3. In agreement with β3 acting as a brake on Ca2+ release, fibroblast migration is enhanced in vitro, and in vivo, closure of skin wounds is accelerated in the absence of β3. To mediate specific physiological responses and to prevent Ca2+ toxicity, cytoplasmic Ca2+ signals must be tightly controlled. The described function of β3, unrelated to its function as a Cav subunit, adds to this tight control. : Belkacemi et al. show that the calcium channel subunit Cavβ3 binds to the IP3R and desensitizes cells to low IP3 levels, influencing fibroblast migration and collagen secretion. Removal of the Cavβ3 protein in mice results in faster skin wound healing. Keywords: Ca2+ signaling, Cavβ3, cell migration, IP3 receptor, wound healing, Cavβ2, Cavβ3 KO, IP3 binding, voltage-gated Ca2+ channel, Ca2+ releas

    Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells

    No full text
    We combined patch clamp and fura-2 fluorescence methods to characterize human TRP3 (hTRP3) channels heterologously expressed in cultured bovine pulmonary artery endothelial (CPAE) cells, which do not express the bovine trp3 isoform (btrp3) but express btrp1 and btrp4.ATP, bradykinin and intracellular InsP3 activated a non-selective cation current (IhTRP3) in htrp3-transfected CPAE cells but not in non-transfected wild-type cells. During agonist stimulation, the sustained rise in [Ca2+]i was significantly higher in htrp3-transfected cells than in control CPAE cells.The permeability for monovalent cations was PNa > PCs≈PK >> PNMDG and the ratio PCa/PNa was 1·62 ± 0·27 (n= 11). Removal of extracellular Ca2+ enhanced the amplitude of the agonist-activated IhTRP3 as well as that of the basal current The trivalent cations La3+ and Gd3+ were potent blockers of IhTRP3 (the IC50 for La3+ was 24·4 ± 0·7 μM).The single-channel conductance of the channels activated by ATP, assessed by noise analysis, was 23 pS.Thapsigargin and 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ), inhibitors of the organellar Ca2+-ATPase, failed to activate IhTRP3. U-73122, a phospholipase C blocker, inhibited IhTRP3 that had been activated by ATP and bradykinin. Thimerosal, an InsP3 receptor-sensitizing compound, enhanced IhTRP3, but calmidazolium, a calmodulin antagonist, did not affect IhTRP3.It is concluded that hTRP3 forms non-selective plasmalemmal cation channels that function as a pathway for agonist-induced Ca2+ influx
    corecore