10 research outputs found

    The many faces of Betelgeuse

    Get PDF
    The dynamics of the surface and inner atmosphere of the red supergiant star Betelgeuse are the subject of numerous high angular resolution and spectroscopic studies. Here, we present three-telescope interferometric data obtained at 11.15 μm wavelength with the Berkeley Infrared Spatial Interferometer (ISI), that probe the stellar surface continuum. We find striking variability in the size, effective temperature, and degree of asymmetry of the star over the years 2006–2009. These results may indicate an evolving shell of optically thick material close to the stellar photosphere

    TEDI: the TripleSpec Exoplanet Discovery Instrument

    Full text link
    The TEDI (TripleSpec - Exoplanet Discovery Instrument) will be the first instrument fielded specifically for finding low-mass stellar companions. The instrument is a near infra-red interferometric spectrometer used as a radial velocimeter. TEDI joins Externally Dispersed Interferometery (EDI) with an efficient, medium-resolution, near IR (0.9 - 2.4 micron) echelle spectrometer, TripleSpec, at the Palomar 200" telescope. We describe the instrument and its radial velocimetry demonstration program to observe cool stars.Comment: 6 Pages, To Appear in SPIE Volume 6693, Techniques and Instrumentation for Detection of Exoplanets II

    Architecture design study and technology road map for the Planet Formation Imager (PFI)

    Get PDF
    The Planet Formation Imager (PFI) Project has formed a Technical Working Group (TWG) to explore possible facility architectures to meet the primary PFI science goal of imaging planet formation in situ\textit{in situ} in nearby star-forming regions. The goals of being sensitive to dust emission on solar system scales and resolving the Hill-sphere around forming giant planets can best be accomplished through sub-milliarcsecond imaging in the thermal infrared. Exploiting the 8-13 micron atmospheric window, a ground-based long-baseline interferometer with approximately 20 apertures including 10km baselines will have the necessary resolution to image structure down 0.1 milliarcseconds (0.014 AU) for T Tauri disks in Taurus. Even with large telescopes, this array will not have the sensitivity to directly track fringes in the mid-infrared for our prime targets and a fringe tracking system will be necessary in the near-infrared. While a heterodyne architecture using modern mid-IR laser comb technology remains a competitive option (especially for the intriguing 24 and 40µm atmospheric windows), the prioritization of 3-5µm observations of CO/H2_2O vibrotational levels by the PFI-Science Working Group (SWG) pushes the TWG to require vacuum pipe beam transport with potentially cooled optics. We present here a preliminary study of simulated L- and N-band PFI observations of a realistic 4-planet disk simulation, finding 21x2.5m PFI can easily detect the accreting protoplanets in both L and N-band but can see non-accreting planets only in L band. We also find that even an ambitious PFI will lack sufficient surface brightness sensitivity to image details of the fainter emission from dust structures beyond ~5 AU, unless directly illuminated or heated by local energy sources. That said, the utility of PFI at N-band is highly dependent on the stage of planet formation in the disk and we require additional systematic studies in conjunction with the PFI-SWG to better understand the science capabilities of PFI, including the potential to resolve protoplanetary disks in emission lines to measure planet masses using position-velocity diagrams. We advocate for a specific technology road map in order to reduce the current cost driver (telescopes) and to validate high accuracy fringe tracking and high dynamic range imaging at L, M band. In conclusion, no technology show-stoppers have been identified for PFI to date, however there is high potential for breakthroughs in medium-aperture (4-m class) telescopes architecture that could reduce the cost of PFI by a factor of 2 or more.This is the author accepted manuscript. The final version is available from SPIE via http://dx.doi.org/10.1117/12.223331

    Studying the birth of exoplanetary systems with the Planet Formation Imager (PFI)

    No full text
    International audienceDespite recent advancements, many fundamental questions still surround the processes that are involved in planetary birth: Where in the protoplanetary disk do the planets form and how do they grow? What factors determine the final architecture of planetary systems? How are water and other volatiles delivered to the protoplanets and how does this affect the potential habitability of these worlds?As part of the "Planet Formation Imager" (PFI) project we develop the roadmap for a future infrared high-angular resolution imaging facility that aims to answer these questions by witnessing the planetary formation processes on the natural scales where the material is assembled, which is the Hill sphere of the forming planets. PFI will detect giant protoplanets on all stellocentric radii, image their interaction with the ambient disk material, and trace their dynamical evolution during the first 100 million years, thereby reveal the processes that determine the architecture of planetary systems.In this contribution we give an overview about the work of the PFI science and technical working group and present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. We will present a baseline PFI architecture that can achieve these goals, point at remaining technical challenges, and suggest activities today that will help make the Planet Formation Imager facility a reality

    The planet formation imager

    Get PDF
    The Planet Formation Imager (PFI, www.planetformationimager.org) is a next-generation infrared interferometer array with the primary goal of imaging the active phases of planet formation in nearby star forming regions. PFI will be sensitive to warm dust emission using mid-infrared capabilities made possible by precise fringe tracking in the near-infrared. An L/M band combiner will be especially sensitive to thermal emission from young exoplanets (and their disks) with a high spectral resolution mode to probe the kinematics of CO and H2O gas. In this paper, we give an overview of the main science goals of PFI, define a baseline PFI architecture that can achieve those goals, point at remaining technical challenges, and suggest activities today that will help make the Planet Formation Imager facility a reality

    The planet formation imager

    No full text
    The Planet Formation Imager (PFI, www.planetformationimager.org) is a next-generation infrared interferometer array with the primary goal of imaging the active phases of planet formation in nearby star forming regions. PFI will be sensitive to warm dust emission using mid-infrared capabilities made possible by precise fringe tracking in the near-infrared. An L/M band combiner will be especially sensitive to thermal emission from young exoplanets (and their disks) with a high spectral resolution mode to probe the kinematics of CO and H2O gas. In this paper, we give an overview of the main science goals of PFI, define a baseline PFI architecture that can achieve those goals, point at remaining technical challenges, and suggest activities today that will help make the Planet Formation Imager facility a reality.</p

    Searches for Technosignatures: The State of the Profession

    Get PDF
    The small size of the SETI workforce is a major problem for NASA and the search for life elsewhere in the universe. The Astro2020 Decadal should address this issue by making nurturing the field an explicit priority for the next decade
    corecore