2,027 research outputs found

    School Based Responses to Non-Suicidal Self Injury and Suicide: Literature Considerations When Framing a Policy Response

    Get PDF
    Deliberate Non-Suicidal Self Injury (NSSI) and suicide present distinct but related concerns for schools. An Australian study of over 6,300 families containing children/ adolescents aged 4 to 17 years found that one in 10 young people had engaged with NSSI – with three quarters of this cohort having harmed themselves in the previous twelve months (Lawrence, 2015). The same study found that within the 12 to 17 year old age group, one in 13 individuals had considered suicide in the previous 12 months, with one in 40 having made attempts (Lawrence, 2015). This article seeks to articulate key themes from literature that demand consideration by schools seeking to construct their own framework or pastoral response, balancing the prioritization of student safety whilst also attending to the realities of staff competencies. Given the age group presented in the Lawrence (2015) study, it should not be surprising that adolescents in the school context may disclosure the presence of intrusive thoughts pertaining to at-risk behaviours. Consequently, schools are well placed to deliver prevention services and simultaneously, need to be prepared to respond to situations of NSSI and suicide attempts. Drawing on the expertise of staff from an Edmund Rice Education Australia (EREA) school located in Brisbane, this paper draws links to existing policy determinants of pastoral care from within this Catholic school, whilst considering the issue of risk-to-self with relevant themes organized according to the three action areas outlined by the Queensland Suicide Action Prevention Plan (Queensland Mental Health Commission, 2015) namely: prevention; intervention; and postvention

    Two-dimensional Site-Bond Percolation as an Example of Self-Averaging System

    Full text link
    The Harris-Aharony criterion for a statistical model predicts, that if a specific heat exponent α≥0\alpha \ge 0, then this model does not exhibit self-averaging. In two-dimensional percolation model the index α=−1/2\alpha=-{1/2}. It means that, in accordance with the Harris-Aharony criterion, the model can exhibit self-averaging properties. We study numerically the relative variances RMR_{M} and RχR_{\chi} for the probability MM of a site belongin to the "infinite" (maximum) cluster and the mean finite cluster size χ\chi. It was shown, that two-dimensional site-bound percolation on the square lattice, where the bonds play the role of impurity and the sites play the role of the statistical ensemble, over which the averaging is performed, exhibits self-averaging properties.Comment: 15 pages, 5 figure

    Unified single-photon and single-electron counting statistics: from cavity-QED to electron transport

    Full text link
    A key ingredient of cavity quantum-electrodynamics (QED) is the coupling between the discrete energy levels of an atom and photons in a single-mode cavity. The addition of periodic ultra-short laser pulses allows one to use such a system as a source of single photons; a vital ingredient in quantum information and optical computing schemes. Here, we analyze and ``time-adjust'' the photon-counting statistics of such a single-photon source, and show that the photon statistics can be described by a simple `transport-like' non-equilibrium model. We then show that there is a one-to-one correspondence of this model to that of non-equilibrium transport of electrons through a double quantum dot nanostructure. Then we prove that the statistics of the tunnelling electrons is equivalent to the statistics of the emitted photons. This represents a unification of the fields of photon counting statistics and electron transport statistics. This correspondence empowers us to adapt several tools previously used for detecting quantum behavior in electron transport systems (e.g., super-Poissonian shot noise, and an extension of the Leggett-Garg inequality) to single-photon-source experiments.Comment: 8 pages, 3 figure

    Atom laser coherence and its control via feedback

    Full text link
    We present a quantum-mechanical treatment of the coherence properties of a single-mode atom laser. Specifically, we focus on the quantum phase noise of the atomic field as expressed by the first-order coherence function, for which we derive analytical expressions in various regimes. The decay of this function is characterized by the coherence time, or its reciprocal, the linewidth. A crucial contributor to the linewidth is the collisional interaction of the atoms. We find four distinct regimes for the linewidth with increasing interaction strength. These range from the standard laser linewidth, through quadratic and linear regimes, to another constant regime due to quantum revivals of the coherence function. The laser output is only coherent (Bose degenerate) up to the linear regime. However, we show that application of a quantum nondemolition measurement and feedback scheme will increase, by many orders of magnitude, the range of interaction strengths for which it remains coherent.Comment: 15 pages, 6 figures, revtex

    Optimal Unravellings for Feedback Control in Linear Quantum Systems

    Full text link
    For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case, such as: given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state-based) control problems (the stationary Linear-Quadratic-Gaussian class), this question is a semi-definite program. Moreover, the answer also applies to Markovian (current-based) feedback.Comment: 5 pages. Version published by Phys. Rev. Let

    The Uncertainty Relation in "Which-Way" Experiments: How to Observe Directly the Momentum Transfer using Weak Values

    Full text link
    A which-way measurement destroys the twin-slit interference pattern. Bohr argued that distinguishing between two slits a distance s apart gives the particle a random momentum transfer \wp of order h/s. This was accepted for more than 60 years, until Scully, Englert and Walther (SEW) proposed a which-way scheme that, they claimed, entailed no momentum transfer. Storey, Tan, Collett and Walls (STCW) in turn proved a theorem that, they claimed, showed that Bohr was right. This work reviews and extends a recent proposal [Wiseman, Phys. Lett. A 311, 285 (2003)] to resolve the issue using a weak-valued probability distribution for momentum transfer, P_wv(\wp). We show that P_wv(\wp) must be wider than h/6s. However, its moments can still be zero because P_wv(\wp) is not necessarily positive definite. Nevertheless, it is measurable in a way understandable to a classical physicist. We introduce a new measure of spread for P_wv(\wp): half of the unit-confidence interval, and conjecture that it is never less than h/4s. For an idealized example with infinitely narrow slits, the moments of P_wv(\wp) and of the momentum distributions are undefined unless a process of apodization is used. We show that by considering successively smoother initial wave functions, successively more moments of both P_wv(\wp) and the momentum distributions become defined. For this example the moments of P_wv(\wp) are zero, and these are equal to the changes in the moments of the momentum distribution. We prove that this relation holds for schemes in which the moments of P_wv(\wp) are non-zero, but only for the first two moments. We also compare these moments to those of two other momentum-transfer distributions and \hat{p}_f-\hat{p}_i. We find agreement between all of these, but again only for the first two moments.Comment: 14 pages, 6 figures, submitted to J. Opt.

    Information, disturbance and Hamiltonian quantum feedback control

    Get PDF
    We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.Comment: 13 pages, multicol Revtex, 2 eps figure
    • …
    corecore