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Information, disturbance, and Hamiltonian quantum feedback control
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We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a
measurement~estimation! strategy and a feedback~control! strategy, and we consider optimizing desirable
properties of each under the minimal constraint that the available strength of both is limited. This motivates
concepts of information extraction and disturbance that are distinct from those usually considered in quantum
information theory. Using these concepts, we identify an information tradeoff in quantum feedback control.
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I. INTRODUCTION

With experimental advances, particularly in the fields
cavity QED@1# and ion trapping@2#, it is possible to observe
individual quantum systems in real time, and it is therefo
natural to consider the possibility of controlling such syste
in real time using feedback@3–14#. Feedback control is in-
valuable in macroscopic applications, and as a consequ
there is a vast body of literature devoted to~classical! con-
trol, which considers issues of optimality and robustne
The techniques of modern control theory were first applied
the quantum feedback control problem by Belavkin@3–6#.
For a recent account, see Belavkin@12#, and a recent but les
technical account of these ideas may be found in@13# and
@14#. In addition, the special case of real-time Markovi
quantum feedback has been analyzed@7–10# and imple-
mented experimentally in certain quantum optical syste
@11#, although this analysis was not concerned with questi
of optimal control in the sense of modern control theo
While the quantum optimal feedback control problem may
certain special cases be solved exactly by using techniq
developed in classical control theory@4,13#, this is not pos-
sible in general. This is at least partly because quantum m
surement is quite different in nature from classical measu
ment, in that it has the capacity to disturb the system un
observation@14#. As a result, the development of optim
quantum control strategies requires optimizing over poss
measurement strategies, which is unnecessary in clas
control.

In feedback control, the dynamics of a system is mani
lated by using information obtained about the syst
through measurement. The goal is usually to maintain a
sired state or dynamics in the presence of noise. A cen
problem of feedback control theory is the development
algorithms to achieve this goal. The approach to contro
design that we consider here is to examine the measure
and feedback steps separately, thereby splitting the feed
control problem into two parts. One can then consider o
mizing desirable properties of these parts separately u
suitable constraints. If one allows the strength of either m
surement or Hamiltonian feedback to be infinite, then a
control objective can be achieved perfectly~this will be
shown below once we have made these concepts of stre
more precise!. A constraint on strength is therefore the min
1050-2947/2001/63~6!/062306~13!/$20.00 63 0623
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mal constraint under which the problem of quantum fee
back control is nontrivial, and this is the constraint we e
ploy here.

The action of optimizing for the feedback and measu
ment independently ignores the possibility that truly optim
solutions may require considering both together. We w
also simplify the problem by considering the optimization
each time step separately. This assumes that it is neve
sirable to perform worse at the current time in order to p
form better at some future time. The approach we take h
is therefore not aimed at finding a globally optimal soluti
given a set of constraints. However, the expectation is
the concepts we introduce here provide a simple system
approach that one can expect to produce good results,
provide an insight into the kind of measurement proces
that are desirable in feedback control.

For the feedback step, we consider the question of
effectiveness of the control by defining a cost function. Sin
one is interested in controlling the dynamics of a given qu
tum system~usually in the presence of some unavoidab
source of environmental noise!, one can specify the objectiv
by specifying the most desired state for the system at e
instant. The ‘‘cost’’ function is then the sum of the distanc
of the state of the system from the desired state at each p
in time, for some suitable measure of distance. We then
the choice of feedback Hamiltonian~different at each instant!
that minimizes this cost function at each time step, un
suitable constraints for the strength of the feedback. N
that, as we pointed out above, because each time ste
considered separately, while this procedure gives a sim
and systematic feedback algorithm, it can be expected to
suboptimal. Note also that this is somewhat different fro
the standard approach taken in modern classical con
theory @16–18#, and more similar to the approach taken
the new techniques of ‘‘postmodern’’ classical control@19#.
In modern classical control~e.g., linear quadratic Gaussia
control theory! one usually optimizes a ‘‘total’’ cost function
obtained from a suitably weighted sum of the cost funct
defined here, and another cost function intended to cap
the cost of feedback strength. We will restrict ourselves
control objectives such that the desired state at each time~the
target state! is pure, since impurity~mixing! merely signifies
a lack of knowledge of the target state.

In considering the optimality of the measurement st
©2001 The American Physical Society06-1
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rather than attempting to find a measurement that explic
optimizes the cost function, we define concepts of inform
tion and disturbance, motivated by the feedback con
problem. We then consider finding measurements that m
mize the information and minimize the disturbance. We fi
that in general these two targets are mutually exclusive
striking contrast to classical control theory. This implies t
existence of a tradeoff between information and disturba
in quantum feedback control.

Since we focus on continuous feedback control, and m
readers will be familiar with generalized measurements
unfamiliar with the formalism of continuous quantum me
surement, we describe in the next section how continu
observation is formulated within the language of generali
measurements. In Sec. III, we define the concept of
strength of a measurement, required as a minimal const
for the feedback control problem. In Sec. IV, we discuss
detail the division of feedback control into ‘‘pure’’ measur
ment and Hamiltonian feedback, and consider what may
achieved when there is no limitation on the strength of eith
We also discuss what may be achieved in this case b
without feedback and with measurement-only feedback
Sec. V, we consider the measurement process, define
cepts of information and disturbance, and consider minim
ing the disturbance and maximizing the information. In S
VI, we examine the Hamiltonian feedback and obtain Ham
tonians that minimize the instantaneous cost function. In S
VII, we implement the feedback control of a two-state sy
tem, showing how the ideas presented in the previous
tions manifest in the performance of the control algorith
Section VIII summarizes and concludes.

II. CONTINUOUS OBSERVATION AND GENERALIZED
MEASUREMENTS

We will concern ourselves primarily with continuous-tim
quantum feedback control, in which a system is obser
continuously, and the results of the measurements~the mea-
surement record! used to continuously alter the Hamiltonia
of the system to effect control. We now discuss how conti
ous observation may be described within the language
generalized quantum measurements, implemented as po
operator valued measures~POVM’s!.

Continuous measurements on a quantum system gen
a measurement record that is a continuous-time stoch
process, which may be either a~Gaussian! Wiener process or
a point process@5,6,20,21,29#. For a given physical system
these two kinds of processes will result from making diffe
ent measurements, for example photon counting~a point pro-
cess! and homodyne detection~a Wiener process! performed
on optical beams.

The key ingredient in describing continuous measu
ments is that during an infinitesimal time stepdt, the infor-
mation obtained by the observer must scale asdt, so that one
can take the continuum limit and obtain a sensible ans
@22–25,5,20,26–29#. This may be realized by defining
POVM, given by*Va

†Vada51, to describe the result of a
observation in the time intervaldt by @22,24#
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Va5S p

2dtD
1/4

e2kdt(Q2a)2
, ~1!

whereQ is an arbitrary operator for the system under obs
vation,a takes all values on the real line, andk is a positive
real constant. For reasons that will be made clear in the n
section, we will only need to be concerned with the case
which Q is Hermitian, so thatQ may be referred to as a
observable, and we will assume this in what follows. No
that eachVa is a weighted sum of projectors onto the eige
basis ofQ, where the weighting is peaked ata. Thus each
application of theV ’s provides some information about th
observableQ. However, asdt tends to zero, this information
also tends to zero, since theV ’s become increasingly broa
over the eigenstates ofQ. Calculating the measurement resu
in the intervaldt at time t, and denoting this asdy(t), we
have@3,6,29#

dy~ t !54k^Q&dt1A2kdW, ~2!

wheredW is the Wiener increment for the intervaldt. Using
this, one can obtain the stochastic evolution of the quan
state under this measurement process, referred to as a q
tum trajectory, and this is given by the stochastic mas
equation~SME! @6,20,29#

dr52 i @H,r#dt2k†Q,@Q,r#‡dt

1~Qr1rQ22 Tr@Qr#r!A2kdW, ~3!

where H gives the system evolution in the absence of
measurement. We can also readily obtain the nonselec
evolution, in which the measurement results are ignored,
this is given by

r~ t1dt!52 i @H,r#dt1E VarVa
†da

52 i @H,r#dt2k†Q,@Q,r~ t !#‡dt. ~4!

WhenH commutes withQ, this evolution leads to a diago
nalization ofr in the basis ofQ, as one would expect fo
measurements ofQ. Similarly, integrating the SME in this
case, one finds that the result in the long-time limit is
projection onto one of the eigenstates ofQ. Such a POVM
realizes a continuous measurement of the operatorQ, such
that the measurement record is a Wiener process.

One can also define a POVM to provide continuous o
servation in which the measurement record is a Poisson
cess. Since this requires only one of the two possible o
comes at each intervaldt, the POVM consists of only two
measurement operators:

V0512 1
2 kQ2dt, ~5!

V15QAkdt. ~6!

That this gives a Poisson process can be seen by consid
the probabilities for the outcomes 0 and 1, which are
2k^Q2&dt and k^Q2&dt, respectively. Result 1 therefor
corresponds to a Poisson ‘‘event,’’ which happens occas
6-2
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INFORMATION, DISTURBANCE, AND HAMILTONIAN . . . PHYSICAL REVIEW A 63 062306
ally, and 0 to the absence of one. The SME correspondin
the measurement process is different from that correspon
to the Wiener measurement, but the nonselective evolutio
identical. Physically, the nonselective evolution is fixed
choosing the interaction of the system with the environm
that is mediating the measurement, and the traject
whether Poisson or Wiener, is selected by how one choo
to measure the environment so as to extract the informa
about the system. In fact, by taking a suitable unitary tra
formation of the Poisson measurement operators, and ta
the appropriate limit in which there are many events in e
intervaldt, one can obtain the Wiener process measurem
from the Poisson measurement, and so the first can be
garded as a special case of the second@20,29#. This is also
discussed in detail in@15,30#.

The point we wish to note here is that regardless of h
one chooses the trajectory, a continuous measurement o
observableQ is given by a POVM in which all the measure
ment operatorsVa are positive operators, diagonal in th
basis ofQ, and one must merely be careful to choose
form of these operators with respect todt so as to provide a
sensible continuum limit.

III. THE STRENGTH OF A MEASUREMENT

Clearly the more accurate the measurements of the
server, the more information she is able to obtain, and
better able she is to choose feedback to effectively con
the system. However, in general, more accurate meas
ments require more resources. A particular example is
measurement of position by the reflection of a laser be
@13,34#, a technique used in the atomic force microscope
that case, it is the laser power on which the measurem
accuracy depends. In treating quantum feedback control,
sensible to consider a restriction on available resources,
hence a restriction on measurement accuracy. To treat
quantitatively, one must introduce a sufficiently precise n
tion of the accuracy, orstrength, of a quantum measuremen

For the purposes of feedback control, since it is the fi
state resulting from measurement that the observer mus
upon with feedback, it is the observer’s information abo
this final state that is relevant. Intuitively, one can therefo
think of stronger measurements as providing, on avera
final states that are more pure~or, alternatively, have a
smaller von Neumann entropy! than weaker measurement
When considering continuous observation, in the absenc
any noise sources, an initially impure state is continua
purified. In this case, the strength of the measurement ca
thought of as being proportional to therate of this purifica-
tion. Note that this concept of information extraction by
measurement is quite different from that usually conside
in quantum information theory. There, authors have b
concerned about the information that a measurement
vides about the initial state of the system~the state immedi-
ately before the measurement! @31,32#, whereas in our case i
is the information about the final state that is important.

We will not need an explicit definition for measureme
strength here, since we will only require two properties
measurement strength that we will motivate below. Ho
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ever, we will give an example of an explicit definition th
satisfies these two properties. To motivate the first prope
we note that as we have defined it so far, it is clear that
strength of a measurement in some sense characterize
average rank of the operatorsVm that make up the associate
POVM ((mVm

† Vm51). If all the Vm are rank 1, then one
always obtains a pure final state, and therefore complete
formation, regardless of the initial state. The higher the ra
of the projectors, the higher in general will be the von Ne
mann entropy for a fixed initial state. The first property w
will require is that measurements that consist of rank 1 p
jectors should have maximum strength~for measurements on
a system of a given dimension!.

For the remainder of this paper, we will refer to measu
ments for which at least one of theVm are rank 1 as infinite
strength measurements. This terminology is natural in
context of continuous observation, since in order to prov
rank 1 projections in a finite time from a continuous me
surement, one would have to take the limitk→` in Eq. ~3!.
However, we wish to stress that our use of this terminolo
is not intended to imply that any explicit definition of me
surement strength should necessarily take this value for th
kinds of measurements.

The second property we wish to impose is that strength
invariant under unitary transformations of the measurem
operators. To motivate this property, one can consider a
vice that measures the spin of a two-state system. One w
expect such a device to provide the same strength of m
surement regardless of how it is oriented in space. Si
spatial rotation covers all unitary transformations for a sp
half, for this system strength should be invariant under
unitary transformations of theVn . We will explicitly con-
sider the spin-half system later.

To provide an example of an explicit definition of me
surement strength for single-shot measurements on fin
dimensional systems, one can first consider the average
certainty after the measurement result is known. Using
von Neumann entropy, for a measurement described
(nVn

†Vn51, this is

uV~r!5(
n

Tr†VnrVn
† ln~VnrVn

†/Tr@VnrVn
†# !‡, ~7!

wherer is the initial state of the system. Using the purity
an alternative measure of uncertainty, we have

up~r!512(
n

Tr@~VnrVn
†!2#

Tr@VnrVn
†#

. ~8!

We can define the strength of a measurement to be the
ference between the uncertainty in the initial state and
average uncertainty after the measurement~i.e., the average
change in uncertainty! for some fixed initial state. If we
choose the initial state to beI /N, then this definition satisfies
our two properties. Using the von Neumann entropy t
gives

sV5 ln~N!2uV~ I /N!, ~9!
6-3
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and using the purity

sp5~121/N!2up~ I /N!, ~10!

in which N is the dimension of the system being measure
Definitions of measurement strength for single-shot m

surements may be extended to continuous measuremen
using the initialrate of uncertainty reduction. Using the ex
plicit definitions given above@Eq. ~9! and Eq.~10!#, it is
straightforward to calculate this rate from Eq.~3! and the Ito
rules for stochastic differential equations@33#:

d

dt
sVU

t50

58kVQ , ~11!

d

dt
spU

t50

5
8k

N
VQ , ~12!

whereVQ is the variance ofQ in the initial state, being

VQ[Tr@Q2/N#2Tr@Q/N#2. ~13!

IV. MEASUREMENT AND FEEDBACK

In classical feedback control, it is natural to consider
measurement process as being qualitatively different fr
the feedback process. In particular, they may be dis
guished by the fact that the measurement in each time
involves no change to the system Hamiltonian, and the fe
back step provides no information. In quantum feedba
since measurement has the ability to affect the dynamic
ways that in classical mechanics would have to be attribu
to a Hamiltonian, the distinction is not as fundamental. Ho
ever, in the vast majority of quantum feedback schemes c
sidered to date, it is some set of parameters describing
system Hamiltonian that are under the observer’s cont
This is motivated by practical considerations, since it is as
yet easiest experimentally to externally control aspects of
Hamiltonian. In this case, the feedback step involves no m
surement, and the observation and feedback processes
be regarded as qualitatively different, as in the class
theory. In view of this, the polar decomposition theorem m
tivates some definitions.

By Kraus’s representation theorem@35#, every valid quan-
tum evolution ~a quantum operation! may be written as a
POVM given by a set of operatorsVn , where the probability
of each outcome isP(n)5Tr@Vn

†Vnr# and the state result
ing from each outcome isrn5VnrVn

†/P(n). The only con-
straint on theVn’s is that (nVn

†Vn51. However, from the
polar decomposition theorem, each of the operatorsV may
be written as the product of a unitary operator and a posi
operator, so that

Vn5UnAVn
†Vn. ~14!

This provides a natural decomposition of a general quan
operation in terms of measurement and feedback. Cons
first the action of the unitary operators. By themselves th
do not describe the acquisition of information, and in th
06230
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sense they do not describe a measurement. This can be
from the fact that a unitary operator does not change the
Neumann entropy of any state it acts upon, and conseque
extracts no information. However, unitary operations are p
cisely the kind that can be applied by Hamiltonian feedba
Hence, the unitary operators appearing in the polar dec
position may be thought of as characterizing purely the fe
back part of the quantum operation. Note that we have w
ten the polar decomposition so that the action of the unit
operator follows after the action of the positive operat
being a necessary condition for feedback.

Conversely, the positive operators characterize the ac
sition of information. They may always be written as
weighted sum of projectors, and therefore thought of as p
viding partial information about the states in the basis
which they are diagonal. When they correspond to ran
projectors, they provide complete information, in that t
final state is pure. Since the unitary part has been facto
out to obtain the positive operators, we may regard th
operators as representing pure measurement; the chang
duced in the quantum state is only that which is strictly n
essary in order provide the information obtained during
measurement. We note that this decomposition of meas
ments into unitary and positive operators has been con
ered before in the context of measurements of the first
second kind@36#.

From this it is clear thateveryquantum evolution can be
realized by a measurement in which the measurement op
tors are positive, followed by a feedback step in which t
Hamiltonian is chosen to depend upon the measuremen
sult. We see that the observation of a single observable,
sidered in Sec. II, corresponds to the special case in which
the positive operators forming the POVM are mutually co
muting.

Under the above definitions, damping processes, suc
cavity decay and Brownian motion, are not considered p
measurements; they are viewed as equivalent to a fixed c
bination of measurement and feedback. Since the objec
feedback control is to limit the deviations of a system from
desired state~or more generally, from a particular evolution
which means merely that the target state changes with tim!,
feedback control is essentially a damping process~toward
the target state!.

The polar decomposition theorem therefore fits snu
with the structure of Hamiltonian feedback, but it is neve
theless important to realize that this is not the only feedb
process that may be considered in quantum mechanics.
note that the product of two positive operators need not
positive. Hence the evolution resulting from a sequence
pure measurements as defined above will in general
equivalent to a single pure measurement followed by so
Hamiltonian evolution~i.e., both measurement and Ham
tonian feedback!. This is an illustration of the fact that quan
tum measurements involve ‘‘active’’ transformations of t
states, as opposed to the ‘‘passive’’ measurements of cla
cal physics@14#.

Consider now the full evolution of a system under Ham
tonian feedback control in a single infinitesimal time stepdt,
with initial stater. Since all dynamical processes commu
6-4



tr
a
e

te

e
a

o
e
a

he
er
e
n

ce
t

e
ra
on
ua
os
on
nc

e-

h

e
hi
d.
o

e

a
th

nal

-

e

ver
dis-
is
ry

s at

ity
uent
s
d-
di-

by
state
re-
ure-

re-
opy
an
ply
as

d a

ts a
l

INFORMATION, DISTURBANCE, AND HAMILTONIAN . . . PHYSICAL REVIEW A 63 062306
to first order, one can treat even continuous feedback con
as alternating steps consisting of measurement and feedb
This is consistent with the general approach of this pap
which is to consider the two steps separately. The sys
evolves under its own ‘‘free’’ Hamiltonian,H0 ~which in
many cases will be the desired evolution!, and is affected by
a source of environmental noise, which can be described
the nonselective evolution generated by a POVM. The m
surement is also performed, and the feedback evolution
plied. For a given measurement resultn, we may write the
full evolution as

r̃n5e2 i (Hn1H0)dtPnS (
j

WjrWj
†D Pnei (Hn1H0)dt, ~15!

where the tilde indicates that we have not bothered to n
malize the final state, andWj are the operators describing th
~undesirable! action of the environment. Since all the oper
tors always commute to first order indt, we have combined
the free Hamiltonian with the feedback Hamiltonian in t
exponential. The task of feedback control is to choose op
tors Pn andHn such that the evolution is closest to the d
sired evolution. Before we consider this for Hamiltonia
feedback, let us examine what can be done in the absen
the conditional unitaries, using measurement alone, and
difference between the two kinds of feedback.

By the definition above, using measurement alone, on
restricted to POVM’s in which all the measurement ope
tors are positive, along with some overall unitary evoluti
independent of the measurement results. Now, to eval
the efficacy of the control procedure, we must have a ‘‘c
function’’ that measures how well we have achieved the c
trol objective, as discussed above in the Introduction. Si
we have a desired ‘‘target’’ states5ucT&^cTu in mind at
some final time~to be achieved following a single measur
ment, or a series of measurements!, sensible cost functions
will provide a measure of how close the final stater f is to
the target state. A number of measures are possible, suc
the inner product (Tr@r fs#), the fidelity (Tr@As1/2r fs

1/2#),
or the distinguishability„(1/2)Tr@r f2s#…. Since we are in-
terested only in target states that are pure, the fidelity
simply the square root of the inner product, so that th
provide equivalent optimization problems. Throughout t
paper, we will use these as the quantities to be optimize

Now, the final state resulting from averaging the results
a single pure measurement is given by

r f5(
n

PnrPn . ~16!

Since Pn5Pn
† , Ando’s result@37# states thatr f is always

majorized byr, which means that the eigenvalues ofr f are
at least as evenly distributed as the eigenvalues ofr. This
means that the von Neumann entropy ofr f is always at least
as large as the entropy ofr. Another way of putting this is
that each eigenvalue ofr f is some weighted average of on
or more of the eigenvalues ofr.

It follows almost immediately from the above results th
the fidelity of the final state cannot be any larger than
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maximum eigenvalue,lmax(r) , of the initial stater. To see
this, we first note that since all the eigenvalues of the fi
state,l j , are a weighted average of the eigenvalues ofr,
none can be larger than the largest eigenvalue ofr. Now,
writing the fidelity in terms of the eigenvectors ofr f , uf j&
we have

^cTur f ucT&5(
j

l j z^f j ucT& z2. ~17!

Since( j z^f j ucT& z251, the fidelity is merely a weighted av
erage of the eigenvalues ofr f , which proves the result. In
fact, choosing any basisuc i&, we obtain the probability dis-
tribution over these states as

m i5^c i ur f uc i&5(
j

x i j l j , ~18!

where x i j 5 z^f j uc i& z2. Since the matrixx i j satisfies( ix i j
51 and ( jx i j 51, it is a doubly stochastic map, with th
result that the vector$m i% is majorized by the vector$l j%,
and hence the von Neumann entropy of the distribution o
any set of basis states is always at least as large as the
tribution over the eigenvectors. Another way of saying this
that diagonal elements of a matrix resulting from a unita
transformation performed on a diagonal matrix are alway
least as uniformly distributed as the original elements~and
almost always more so!.

Clearly this result for the upper bound on the final fidel
also holds for repeated measurements, in which subseq
measurements arenot conditioned on the results of previou
measurements~i.e., for pure measurements with no fee
back!. However, it does not hold for sequences of con
tional measurements. In this case, the initial state seen
subsequent measurements cannot be written as the
given by averaging over the results of previous measu
ments, since each final state may have a different meas
ment performed on it.

It turns out that if we allow ourselves an infinite measu
ment strength, then the upper bound on the final entr
derived above can always be achieved in the limit of
infinite number of measurements. To see this, one sim
follows the procedure of Aharonov and Vardi, referred to
the ‘‘inverse quantum Zeno effect,’’ developed in Ref.@38#.
Consider first an initial pure state,uc&. We can always write
the target state as a superposition of the initial state an
state orthogonal to the initial state,uc&' . That is, we can
write

ucT&5cos~u!uc&1sin~u!eifuc&' ~19!

for some value ofu andf. Now consider the projectorP«

5u«&^«u onto the state

u«&5cos~«!uc&1sin~«!eifuc&' . ~20!

For «50, this is the initial state, and for«5u, this is the
final state. For any value in between, this state represen
rotation through an angle« from the initial state to the fina
6-5
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state. IfP«5u«&^«u makes up one of the operators describi
the measurement, the probability offailing to obtain the state
u«& is

P~«!5sin2~«!5«21•••. ~21!

If we succeed in obtaining the stateu«&, then in that mea-
surement step we have succeeded in rotating the s
through« toward the desired state. We can attempt to rot
the state through the fullu radians by choosing«5u/M and
repeating the process usingM measurements. Since the pro
ability of failure at each step is then second order in (1/M ),
while the number of steps scales only asM, as the number of
steps tends to infinity, the total probability of failure tends
zero, and in this limit one achieves the desired rotation.
see that this achieves the upper bound when the initial s
is mixed, we choose the projector so as to rotate the eig
vector ofr corresponding to the maximum eigenvalue to t
desired state. For each measurement, the correspon
POVM is then given, in general, byP« i

1( lV l
†V l51,

whereP« i
is the projector for thei th measurement, and th

V l are arbitrary. The final state may then be written

r f5)
i

M

L« i
@l1u1&^1u#1)

i

M

L« iF (n52

N

lnun&^nuG , ~22!

L« i
@A#5P« i

AP« i
1(

l
V lAV l

† , ~23!

whererun&5lnun&, with l1 the maximum eigenvalue, an
A is an arbitrary operator. As the number of measureme
tends to infinity, the first term on the right-hand side of E
~22! becomes

lim
M→`

)
i

M

L« i
l1u1&^1u5l1ucT&^cTu. ~24!

Since this term contributeslmax(r) to the fidelity, and since
the other pure states making up the final density matrix c
not contribute negatively, the upper bound is achieved.

What happens when we allow ourselves infinite measu
ment strength, and sequences of measurements in which
sequent measurements areconditionedon previous results
~i.e., measurement-only feedback!? In that case it is clear tha
the desired state can always be obtained with certainty;
begins by making a projection measurement in an arbitr
basis, which results in a set of pure states. Then the ab
procedure is used to rotate the resulting state to the targ

When infinite strength is available, measurement-o
feedback is equivalent to Hamiltonian feedback, since b
allow any state to be created. However, in many continu
feedback control applications, the strength of the meas
ment is unlikely to be so much stronger than either the
vironmental noise or the free system dynamics that it can
used in this fashion in place of Hamiltonian feedba
@1,39,40#. With measurements of finite strength, the o
comes are necessarily random, so that Hamiltonian feedb
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cannot be simulated reliably. One can expect therefore
real applications will find the use of Hamiltonian feedba
invaluable.

V. MEASUREMENT: MAXIMAL INFORMATION
AND MINIMAL DISTURBANCE

In Sec. III, we introduced the concept of the informatio
provided about the system by a measurement, and this
volved specifically the information regarding the stateresult-
ing from the measurement, a definition motivated by fee
back control. This in turn motivated the definition of th
strength of a measurement~e.g.,sv or sp), important because
it constitutes a natural constraint when considering the o
mization of control strategies. However, the actual inform
tion provided by a given measurement is not only a funct
of the measurement strength, but also the state of the sy
immediately prior to the measurement. As a result, once
available measurement strength is known, one can ask
to optimize the information provided by the measurem
given the current state of the system. This defines the c
cept of a measurement returning maximal information~for a
fixed measurement strength!.

In addition to providing information, quantum measur
ments can also introduce noise, a statement that we will n
make precise. Consider first a classical system driven
noise. One can characterize the extent of the noise in s
time interval by the increase in the entropy of the pha
space probability distribution for the system state that
given by averaging over the noise realizations. This tells
how much we expect the noise to spread out the system
phase space in that time interval, and characterizes our
certainty about the future state of the system resulting fr
the noise. Now consider a classical measurement. Since
initial state is uncertain~or else we would not need to mak
the measurement!, the result of the measurement is rando
and as a result one’s state of knowledge changes in a ran
fashion. However, this random change should not be con
ered noise, since if one averages over all the possible m
surement results~all the possible random changes!, the prob-
ability distribution for the state of the system remai
unchanged. This is the sense in which classical measurem
introduces no noise into the system.

Now consider a quantum system driven by noise. T
equivalent of the phase-space distribution is the density
trix. In the same manner, one can characterize noise by
resulting increase in the von Neumann entropy of the den
matrix resulting from averaging over the possible noise re
izations. One can therefore characterize the noise introdu
by a quantum measurement by calculating the increase in
von Neumann entropy~or alternatively the decrease in th
purity! of the density matrix that results from averaging ov
the possible measurement results. While we saw above
in the classical case the measurement introduces no n
this is not, in general, true for quantum measurement.
terms of the von Neumann entropy, the excess noise in
duced by a measurement is

Ne
V5SV~r f !2SV~r!. ~25!
6-6
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INFORMATION, DISTURBANCE, AND HAMILTONIAN . . . PHYSICAL REVIEW A 63 062306
Defining it in terms of the purity, we have

Ne
p5Tr@r2#2Tr@r f

2#. ~26!

This makes precise the intended meaning of our initial st
ment that quantum measurements can introduce noise.
that this has nothing to do with the Heisenberg uncerta
principle, what concerns us here is the uncertainty of
future quantum state, and not the uncertainty of some se
observables for a given state. Recall that this is because
object of the control is the state of the system, and it is up
the observer to decide what the desired state is. Whether
a minimal uncertainty state in the sense of the Heisenb
uncertainty principle is immaterial.

Let us consider first the question of minimizing the d
turbance due to the measurement. Recall that for a pure m
surement, the evolution given by averaging over the m
surement results is given by Eq.~16!, where all thePn are
positive operators. Once again invoking Ando’s result,
have that the von Neumann entropy of the final state is ne
decreased by the measurement. Measurements that min
noise are therefore the measurements that leave the von
mann entropy unchanged. These measurements are in
sense most like classical measurements. A set of meas
ments satisfying this criterion are those in which all thePn
commute with the initial density matrix. In this case we ha

r f5(
n

PnrPn5(
n

Pn
2r5r. ~27!

In the language of continuous measurements, since the
eratorsPn are diagonal in the eigenbasis of the observab
this means choosing to measure an observable that shar
eigenbasis with the density matrix.

On a practical note, for continuous observation, meas
ing in the eigenbasis of the density matrix involves contin
ously changing the measured observable~note that such a
process has been considered previously in the contex
adaptive measurements@41#!. In many situations, this flex
ibility may be only partially available, or not at all. Howeve
the above analysis indicates that for the purposes of n
minimization, one should choose the measured observab
be that in which the system is diagonal, or nearly diagon
for the longest time during the period of control. In fact, th
introduces the possibility that in certain cases it may be
sirable to turn off measurement for periods in which the s
tem occupies states that have large off-diagonal elemen
the eigenbasis of the observable. Of course, the resu
noise reduction would have to be balanced against the
companying loss of information.

Maximizing the information for a fixed measureme
strength is a much more difficult problem. Here we will e
amine a specific example for the continuous measureme
a two-state system. In the formulation of continuous m
surements that was discussed in Sec. II, we used mea
ment operators where each was a sum over an infinite n
ber of projectors. For a two-state system, it is possible
obtain the same result~i.e., the same continuous measur
ment driven by Gaussian noise! by using a formulation with
06230
e-
ote
y
e
of
he
o
be
rg

a-
a-

e
er
ize
eu-
his
re-

p-
,
an

r-
-

of

se
to
l,

-
-
in
g
c-

of
-
re-
-

o
-

only two measurement operators where each is the sum
only two projectors. To obtain a continuous measuremen
a given observable, the POVM is given byV0

21V1
251,

where the measurement operators are

V05Aku0&^0u1A12ku1&^1u, ~28!

V15Aku1&^1u1A12ku0&^0u ~29!

in which k51/21Akdt, andu0& and u1& are the eigenstate
of the observable. In each time stepdt, this produces one o
two results. The sum of these, in a time intervalDt5Ndt in
which N results are obtained, is naturally governed by t
binomial distribution. In the limit of largeN ~and infinitesi-
mal Dt), this tends to a Gaussian, and one obtains the m
surement record@Eq. ~2!# and SME@Eq. ~3!# given in Sec. II,
where the measured observableQ5u0&^0u2u1&^1u. We can
alternatively think of this measurement as a single-shot m
surement, and in that casek can take any value between
and 1. Note that whenk50 or k51, the measurement i
one of infinite strength. Ask becomes closer to1

2 , the
strength reduces, and fork5 1

2 the measurement provides n
information.

We can obtain measurements of all possible observa
by applying to the measurement operators an arbitrary r
tion over the Bloch sphere, given by the unitary transform
tion

U~u,f!u0&5cos~u/2!u0&1eif sin~u/2!u1&, ~30!

U~u,f!u1&5cos~u/2!u1&2e2 if sin~u/2!u0&. ~31!

Recall that this unitary transformation of the measurem
operators preserves the measurement strength as defin
Sec. III. Without loss of generality, we can choose the init
density matrix to be diagonal, and write it asr5pu0&^0u
1(12p)u1&^1u. One can then obtain an analytic expressi
for the final average purity, which is given by

I f
p[12up5 (

n50

1 Tr@~UVn
†U†rUVnU†!2#

Tr@UVn
†U†rUVnU†#

. ~32!

This expression is fairly complex, and we will not need
here. ~For a detailed analysis of this expression, includi
analytic expressions for general two-outcome measurem
on two-state systems, the reader is referred to@45#.! It is
explicitly independent off, as one would expect, since it i
u alone that gives the angle~on the Bloch sphere! between
the basis in which the density matrix is diagonal and
basis of the measured observable. The final average puri
then explicitly dependent on the three parametersp, k, andu,
and we are concerned with maximizing this with respect
u. When the measurement is nontrivial (k5” 0.5), the
strength of the measurement is finite (k5” 0,1), and the initial
state is impure@pP(0,1)#, one finds that the location of th
maximum is independent ofp and k, and occurs foru
5p/2. This means that on average the maximum inform
tion is obtained about the final state~for fixed measuremen
strength! when the basis of the measured observable is m
6-7
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FIG. 1. Here we plot the information obtaine
about the final state~solid line!, characterized by
the final average purity,I f

p , and the excess nois
introduced by the measurements~dashed line!,
Ne

p , against the measured observable, para
etrized by the angleu. The parameters arep
50.1 andk50.75
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mally different from the eigenbasis of the density matr
~i.e., if the density matrix is a mixture ofsz eigenstates, then
one should measuresx or sy).

We see then that at least for a two-state system, the m
mal disturbance is obtained when the measured observ
has the same eigenbasis as the density matrix, and the m
mal information is obtained when the two bases are ma
mally different. Thus we obtain the result that, at least fo
two-state system, there is a tradeoff between information
disturbance in quantum feedback control~in contrast to clas-
sical feedback control!. This tradeoff for finite strength quan
tum measurements is also of interest from a purely fun
mental point of view, and this is explored in detail in Re
@45#. We plot both the excess noise introduced by the m
surement and the average final purity resulting from the m
surement as a function ofu in Fig. 1. For a fixed measure
ment strength, one therefore has the choice betw
choosing a measurement to minimize the noise, and co
quently obtain better control of the system~in that the system
will fluctuate less around the desired value!, or obtain a more
accurate knowledge of the system at the expense of incre
noise. Which is most desirable may well depend upon
current state of knowledge. For example, if the state of
system is poorly known, perhaps early on in the control p
cess, then it may prove desirable to obtain information m
quickly, at the expense of introducing extra noise, since
large uncertainty will be the major factor in reducing t
effectiveness of the feedback. However, once the observ
knowledge is sufficiently sharp, it may prove more effecti
to reduce the noise at the expense of some added uncerta
In Sec. VII, we will present simulations to show how th
information tradeoff affects the performance of feedba
control in a two-state system.

VI. A SUBOPTIMAL HAMILTONIAN FEEDBACK
ALGORITHM

Here we consider a feedback algorithm in which the fe
back Hamiltonian will, at each point in time, be chosen to
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a function of the observer’s estimated state~and the target
state! at that time. Since the estimated state, in general,
pends upon the measurement record up until that time,
feedback Hamiltonian depends ultimately upon the meas
ment record, and this is what makes the procedurefeedback
control. The observer’s estimate of the state of the system
time t is some density matrix,r(t). To obtain the true bes
estimate, the observer will integrate the SME for the syst
under observation~naturally including the dynamics give
by the feedback history! using the measurement record. A
ternatively, if this is too time-consuming, the observer mig
use some suboptimal estimation procedure@14#.

We will chose the feedback Hamiltonian at timet to be
that which will, in the next infinitesimal time step, maximiz
the fidelity of the current state estimate with the current t
get state. Naturally, this will define a continuously changi
feedback Hamiltonian. Denoting the state at timet simply as
r, the state after an infinitesimal time step is given by

r f5r2 i @H,r#Dt2 1
2 †H,@H,r#‡~Dt !21•••, ~33!

whereH denotes the feedback Hamiltonian at timet ~we will
usually suppress the time argument for simplicity!. In what
follows, we will refer to the state after the infinitesimal ste
as the final state, although, naturally, this is just another s
that the system passes through during the period of con
The fidelity of the final state with the target state is then

^cTur f ucT&5^cTurucT&2 i ^cTu@H,r#ucT&Dt

2 1
2 ^cTu†H,@H,r#‡ucT&~Dt !21•••. ~34!

The first term is fixed, so to maximize the fidelity w
should maximize the coefficient ofDt, being the dominant
term. If the target state commutes withr, then this term
vanishes for allH, so that we cannot choose a Hamiltonia
that will cause an increase in the fidelity that is first order
time. If this situation occurs only for vanishingly sma
times, then it will make effectively no difference to the fee
back performance. However, in those special situations
6-8
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which the intrinsic dynamics preserves the commutivity
r(t) and the target state, it can be important to choos
Hamiltonian that maximizes the term that is second orde
time. One should note, however, that if one has freedom
choose the measurement basis, one can always choose
sis that disturbs the state so as to break the commutivit
r(t) with the target state, eliminating the need to consi
the second-order term in the time evolution.

The maximization must be performed under a reasona
constraint on the eigenvalues ofH ~i.e., a constraint tha
captures the concept of a limitation on the strength of fe
back!. A number of suitable constraints are possible, such
a restriction on the maximum eigenvalue ofH, the sum of
the norms of the eigenvalues, the sum of the squares o
eigenvalues, etc. Here we choose to use the last of t
constraints, namely

(
n

ln~H !2<m. ~35!

To maximize the coefficient ofDt in Eq. ~34!, we first note
that it may be written as the operator inner product Tr@HA#,
where

A5 i ucT&^vu2 i uv&^cTu,

uv&5rucT&. ~36!

The maximum of the inner product, under the condition t
the norms of the operators are constrained, occurs when
operators are aligned:H5cA, wherec is in general a com-
plex number, but real in this case to preserve the Hermiti
of H. With this inner product, the norm ofH is

Tr@H2#5( ln~H !2. ~37!

Naturally, we take the maximum value allowed under t
constraint, setting Tr@H2#5m. This fixes the magnitude o
the proportionality constantc, and results in the following
explicit construction for the feedback Hamiltonian:

H„r~ t !,ucT~ t !&…5 ix@ ucT~ t !&^cT~ t !u,r~ t !#, ~38!

where we have included the time dependence explicitly,
where

x5A m

a~ t !2b2~ t !
, ~39!

with

a~ t !5^cT~ t !ur2~ t !ucT~ t !&, ~40!

b~ t !5^cT~ t !ur~ t !ucT~ t !&. ~41!

It now remains to maximize the coefficient of (Dt)2 in
Eq. ~34!. Recall this is only required under the condition th
the first term is zero, which implies thatrucT&5lTucT&. In
this case, the expression for the coefficient may be written
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^cTuH~r2lTI !HucT&. ~42!

Now, denoting the eigenvalues ofr by ln ~ordered in de-
creasing order!, the eigenstates byun&, and denoting the tar-
get state as the eigenvector withn5M , the above expression
becomes

^cTuHrHucT&5 (
n51

N

~ln2lM !z^nuHuM & z2. ~43!

Now, the constraint on the feedback Hamiltonian may
written

Tr@H2#5TrS (
n

un&^nuH(
m

um&^muH D
5(

nm
z^nuHum& z25m, ~44!

being a constraint on the sum of the square magnitudes o
elements ofH. Only the subsetz^nuHuM & z2 of these, withn
ÞM , contributes to the expression to be maximized. To
tain the maximum value for the expression, we must the
fore set all the elements ofH that do not contribute to it to
zero, this allowing the contributing elements to be as large
possible. The constraint then becomes

(
n5” M

N

z^nuHuM & z25m/2, ~45!

where the factor of one-half is enforced by the Hermiticity
H. The expression can now be seen as an average o
eigenvalues of r over the ‘‘distribution’’ P(n)
5 z^nuHuM & z2, which is normalized tom by the constraint.
The maximum value is therefore achieved when all
weight of the distribution is placed on the term with th
largest eigenvalue. The solution is therefore

z^1uHuM & z25 z^M uHu1& z25m/2, ~46!

with all other elements zero. The explicit construction for t
resulting feedback Hamiltonian is

H„r~ t !,ucT~ t !&…5Am/2@ u1&^cT~ t !u1ucT~ t !&^1u#.
~47!

Note that this assumes that the target state is orthogon
u1&, being the eigenvector with the largest eigenvalue. If
u1& is the target state, then there exists no Hamiltonian e
lution that will increase the fidelity, since the fidelity is th
maximum it can be given the current purity ofr. In that
case, we are free to setH50 for that time step.

It is worth noting that since the magnitude of the feedba
Hamiltonian and the strength of the continuous observa
are uniformly bounded, the evolution of the system is co
tinuous. Given this, since the feedback Hamiltonian is a c
tinuous function of the system state, it is intuitively clear th
the feedback algorithm is well-defined~and continuous! in
the continuum limit for almost all sample paths.
6-9
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ANDREW C. DOHERTY, KURT JACOBS, AND GERARD JUNGMAN PHYSICAL REVIEW A63 062306
We now have a feedback algorithm that can be used
conjunction with a measurement strategy for feedback c
trol. In the next section, we will implement such a strate
for the control of a two-state system.

Having found a continuous feedback algorithm by ma
mizing the fidelity at each time step, it is natural to ask wh
one should do given afinite time in which to perform the
feedback. That is, we can imagine a situation where
observes the system for a finite time, and then has a fi
time in which to perform a unitary transformation to brin
the system as close as possible to the target state.

Denoting the state of the system at the beginning of
finite feedback step asr, the fidelity with respect to the
target state at the end of the feedback step is given by

F~r f ,s!5Tr@Ar1/2sr1/2#, ~48!

wheres5ucT&^cTu is the target state andU is the unitary
transformation constituting the feedback. We wish to findU
to maximizeF(r f ,s). Observing first that, for arbitraryA
and unitaryV,

max
V

uTr@AV#u5max
V

uTr@AA†AV8V#u

5max
V

U(
j

s j~A!eiu jU
5Tr@AA†A#, ~49!

where we have used the polar decomposition theorem
A(A5AA†AV8), and the s j (A) are the eigenvalues o
AA†A. SettingA5r f

1/2s1/2, this gives

F~r f ,s!5max
V

uTr@~UrU†!1/2s1/2V#u

5max
V

uTr@Ur1/2U†s1/2V#u<(
j

l j~r!1/2l j~s!1/2,

~50!

where the final inequality uses the result by von Neuma
@42#. In the last line,l j (r) andl j (s) are the eigenvalues o
r and s, respectively, ordered such that the largest eig
value ofr multiplies the largest eigenvalue ofs, the second
largest the second largest, and so on down to the sma
eigenvalue of both states. Now we need merely realize
we can achieve the upper bound by choosingU so as to
diagonalizer in the basis ofs, reordering the basis state
such that the largest eigenvalue ofr is attached to the eigen
state ofs with the largest eigenvalue. Writing the eigensta
of s as us j& ~with eigenvalues ordered by size! and those of
r as ur j& ~similarly ordered!, then the explicit construction
for the optimalU is

U5(
j

us j&^r j u. ~51!
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VII. FEEDBACK CONTROL OF A TWO-STATE SYSTEM

In the previous sections we have considered the meas
ment and Hamiltonian feedback parts of the control probl
separately. This resulted in a straightforward choice fo
Hamiltonian feedback algorithm, but did not result in a cle
choice for the measurement strategy. This was because
were able to identify in the measurement process a trad
between information and disturbance. Because of this,
optimal measurement strategy for a given application
likely to depend upon the relative strengths available for
measurement and feedback. For example, if the feedb
Hamiltonian is relatively strong, then it is likely that it wil
be able to effectively counter the disturbance introduced
the measurement, and therefore the measured observ
should be chosen to provide maximal information and
expense of maximal disturbance. When this is not the c
the most desirable measurement is likely to be that wh
introduces less disturbance at the expense of providing
duced information.

To examine the performance of a feedback control al
rithm, we must run the algorithm many times in order
obtain the average behavior. This is computationally v
expensive, and so we use massively parallel supercompu
that are ideal for this task. The results we present here
obtained by averaging 1000 realizations of the control al
rithm.

To provide a simple example of feedback control, we co
sider a spin-half system precessing in a magnetic fi
aligned along thez axis @43,44#. In the absence of any noise
a spin aligned originally along thex axis would rotate at a
constant angular velocity around thez axis, and we take this
to be the desired~target! behavior. To provide the contro
problem, we subject the spin to noise that dephases it aro
the z axis ~this could arise from fluctuations in the magne
field!. The master equation describing the free~but noisy!
evolution of the spin is thus given by

ṙ52 i\v@sz ,r#2b†sz ,@sz ,r#‡, ~52!

where v is the precession frequency in the magnetic fie
andb is the strength of the dephasing noise. To implem
feedback control, we allow the observer~who is also natu-
rally the controller! to measure the spin along an arbitra
spin directionv(t), with measurement constantk, and apply
a feedback Hamiltonian,H fb(t), obtained using the algo
rithm presented in the preceding section. The full evolut
of the controllers’ state of knowledge, including the me
surement and feedback, is therefore

dr52 i\@sz1H fb~ t !,r#dt2b†sz ,@sz ,r#‡dt

2k†sv(t) ,@sv(t) ,r#‡dt

1A2k~sv(t)r1rsv(t)22 Tr@sv(t)r#r!dW. ~53!

We now simulate the dynamics resulting from the fee
back control loop for different values ofu, being the angle
between the eigenbasis of the instantaneous system de
matrix and the instantaneous measured observable, as
cussed in Sec. V. For these simulations, the strength of
6-10
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FIG. 2. The average purity~diamonds! and
fidelity ~circles! of a feedback control algorithm
for different measurement anglesu. The param-
eters are precession frequency\v5p, measure-
ment constantk52, noise strengthb50.4, and
feedback strengthm510.
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magnetic field is such that\v5p, so that the spin rotate
once in a time intervalt51. The noise strength isb50.4,
and the parameters for the control loop arek52 and feed-
back strengthm510. We start the system in a pure state w
the spin pointing along thex direction, and evolve the con
trolled dynamics for a duration oft52 ~the purity and fidel-
ity settle down to their steady-state behavior by appro
mately t50.8). Averaging the fidelity and purity over th
full length of the run, for different values ofu we obtain Fig.
2. Examining the dependence of the purity onu, we find
what we expect from the discussion in Sec. V. That is,
average purity of the system increases withu, achieving a
maximum atu5p/2. This reflects the fact that, on averag
measurements with a larger value ofu extract information
from the system at a faster rate.

The behavior of the fidelity, in this case, is similar to th
of the purity. Asu increases, the feedback is sufficient
ensure that even though we can expect the noise to incr
with u, the increase in purity has more of an effect on t
fidelity than the noise. The result is that, with these
sources, it is best to chooseu5p/2 ~so as to measure in
basis maximally different from that which diagonalizes t
density matrix!. However, from our previous analysis of th
tradeoff between information and disturbance, we canno
ways expect this to be the case.

VIII. CONCLUSION

In this paper, we have considered the problem of cont
ling a quantum system in real time using feedback con
tioned on information obtained by continuous observati
The question of how to effect the best control given t
system dynamics~including environmental noise! and con-
straints on available resources is highly nontrivial. Here
considered a simplified problem in which we examine
measurement process and the resulting Hamiltonian fe
back separately. Our purpose was both to examine what
06230
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e

,

t

se
e
-

l-

l-
i-
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e
e
d-
n-

cepts are motivated by the feedback control problem an
explore the question of optimization in this simplified pro
lem. A concept that arises immediately in considering fe
back control is the strength of a measurement. This stren
quantifies the amount of information that a measurem
provides. Previous definitions of the information provided
quantum measurements have focused on information reg
ing the state prior to the measurement. Here we have arg
that it is the information regarding the stateresulting from
the measurement that is relevant to quantum feedback
trol, and we introduced a concept of measurement stren
accordingly.

Since measurements disturb quantum systems, it is im
tant to understand how this relates to feedback control.
showed how it is possible to quantify the concept of t
noise introduced by measurements in a way that is relev
to feedback control. One finds that while classical measu
ments do not introduce noise, quantum measurements in
eral do, although it is possible, at least in principle, to ma
continuous quantum measurements that are noise-free.

Having arrived at precise concepts of information and d
turbance, we examined the special case of continuous m
surements performed on a two-state system, and found
maximization of information and minimization of noise we
mutually exclusive goals, implying the existence of
information-disturbance tradeoff in quantum feedback c
trol. This highlights the complexity of the control problem

We also considered the Hamiltonian feedback part of
control process. Defining the cost function as the fide
with a target state, and the feedback strength as the nor
the Hamiltonian, we were able to obtain the Hamiltoni
generating the optimal instantaneous feedback.

Here we explicitly consider control realized by choosi
dynamics conditional upon a measurement process. Bec
of this, one can refer to this technique as using a class
controller, since it works by taking a classical process~the
measurement record! and altering the system Hamiltonia
6-11
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accordingly, all of which can be achieved by a classical s
tem. It is therefore worth noting that, so long as we a
considering the dynamics of the controlled system alone
be the important quantity, this is equivalent to control tha
realized by connecting the system, via an interaction Ham
tonian, to another quantum system, where this second sy
is large enough to be treated as a bath@15#. In general, using
a second quantum system in this fashion may be referre
as using a quantum controller. When the quantum contro
is finite-dimensional and restricted in its dynamical respo
time, one can expect the performance of classical and q
tum controllers to be somewhat different, and this is an
teresting area for future work.

The question of how best to design feedback strategie
control noisy quantum systems is a complex one. Howe
the study of this problem will help us to understand bet
rs
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how quantum measurement may be exploited in the man
lation of quantum systems, and as quantum technology
vances, we can expect that this question will become incre
ingly important in practical applications.
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