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Information, disturbance, and Hamiltonian quantum feedback control
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We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a
measurementestimation strategy and a feedbackontro) strategy, and we consider optimizing desirable
properties of each under the minimal constraint that the available strength of both is limited. This motivates
concepts of information extraction and disturbance that are distinct from those usually considered in quantum
information theory. Using these concepts, we identify an information tradeoff in quantum feedback control.
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I. INTRODUCTION mal constraint under which the problem of quantum feed-
back control is nontrivial, and this is the constraint we em-
With experimental advances, particularly in the fields ofploy here.
cavity QED[1] and ion trapping2], it is possible to observe The action of optimizing for the feedback and measure-
individual quantum systems in real time, and it is thereforement independently ignores the possibility that truly optimal
natural to consider the possibility of controlling such systemssolutions may require considering both together. We will
in real time using feedbadi3—-14]. Feedback control is in- also simplify the problem by considering the optimization at
valuable in macroscopic applications, and as a consequeneach time step separately. This assumes that it is never de-
there is a vast body of literature devoted(tdassical con-  sirable to perform worse at the current time in order to per-
trol, which considers issues of optimality and robustnessform better at some future time. The approach we take here
The techniques of modern control theory were first applied tas therefore not aimed at finding a globally optimal solution
the quantum feedback control problem by BelavKi-6). given a set of constraints. However, the expectation is that
For a recent account, see Belavkir?], and a recent but less the concepts we introduce here provide a simple systematic
technical account of these ideas may be foundlli®] and  approach that one can expect to produce good results, and
[14]. In addition, the special case of real-time Markovianprovide an insight into the kind of measurement processes
quantum feedback has been analyz&e-10] and imple- that are desirable in feedback control.
mented experimentally in certain quantum optical systems For the feedback step, we consider the question of the
[11], although this analysis was not concerned with questionsffectiveness of the control by defining a cost function. Since
of optimal control in the sense of modern control theory.one is interested in controlling the dynamics of a given quan-
While the quantum optimal feedback control problem may intum system(usually in the presence of some unavoidable
certain special cases be solved exactly by using techniquesurce of environmental noijsene can specify the objective
developed in classical control thed,13], this is not pos- by specifying the most desired state for the system at each
sible in general. This is at least partly because quantum med#astant. The “cost” function is then the sum of the distances
surement is quite different in nature from classical measureef the state of the system from the desired state at each point
ment, in that it has the capacity to disturb the system undein time, for some suitable measure of distance. We then find
observation[14]. As a result, the development of optimal the choice of feedback Hamiltoniddifferent at each instaht
guantum control strategies requires optimizing over possibléhat minimizes this cost function at each time step, under
measurement strategies, which is unnecessary in classicsllitable constraints for the strength of the feedback. Note
control. that, as we pointed out above, because each time step is
In feedback control, the dynamics of a system is manipu€onsidered separately, while this procedure gives a simple
lated by using information obtained about the systemand systematic feedback algorithm, it can be expected to be
through measurement. The goal is usually to maintain a desuboptimal. Note also that this is somewhat different from
sired state or dynamics in the presence of noise. A centrahe standard approach taken in modern classical control
problem of feedback control theory is the development oftheory[16—18, and more similar to the approach taken in
algorithms to achieve this goal. The approach to controllethe new techniques of “postmodern” classical confro9].
design that we consider here is to examine the measuremelnt modern classical contrde.g., linear quadratic Gaussian
and feedback steps separately, thereby splitting the feedbackntrol theory one usually optimizes a “total” cost function
control problem into two parts. One can then consider opti-obtained from a suitably weighted sum of the cost function
mizing desirable properties of these parts separately undeefined here, and another cost function intended to capture
suitable constraints. If one allows the strength of either meathe cost of feedback strength. We will restrict ourselves to
surement or Hamiltonian feedback to be infinite, then anycontrol objectives such that the desired state at each(time
control objective can be achieved perfectipis will be  target statgis pure, since impuritymixing) merely signifies
shown below once we have made these concepts of strengghlack of knowledge of the target state.
more precisg A constraint on strength is therefore the mini-  In considering the optimality of the measurement step,
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rather than attempting to find a measurement that explicitly o\ L4 ,

optimizes the cost function, we define concepts of informa- Qa=(2—dt) e kaQ- )", 1)

tion and disturbance, motivated by the feedback control

problem. We then consider finding measurements that maxivhereQ is an arbitrary operator for the system under obser-

mize the information and minimize the disturbance. We findvation, « takes all values on the real line, akds a positive

that in general these two targets are mutually exclusive, imeal constant. For reasons that will be made clear in the next

striking contrast to classical control theory. This implies thesection, we will only need to be concerned with the case in

existence of a tradeoff between information and disturbancwhich Q is Hermitian, so thaQ may be referred to as an

in quantum feedback control. observable, and we will assume this in what follows. Note
Since we focus on continuous feedback control, and manghat each), is a weighted sum of projectors onto the eigen-

readers will be familiar with generalized measurements bubasis ofQ, where the weighting is peaked at Thus each

unfamiliar with the formalism of continuous quantum mea-2application of the)’s provides some information about the

surement, we describe in the next section how continuougbservableQ. However, asit tends to zero, this information

observation is formulated within the language of generalizedlso tends to zero, since tif€'s become increasingly broad

measurements. In Sec. Ill, we define the concept of th@ver the eigenstates @ Calculating the measurement result

strength of a measurement, required as a minimal constraifit the intervaldt at timet, and denoting this ady(t), we

for the feedback control problem. In Sec. IV, we discuss inhave[3,6,29

detail the division of feedback control into “pure” measure-

ment and Hamiltonian feedback, and consider what may be dy(t)=4k(Q)dt+ V2kdw, @)

achieved when there is no limitation on the strength of either,

We also discuss what may be achieved in this case bOtﬁ/ﬂs, one can obtain the stochastic evolution of the quantum

without feedback and with measurement-only feedback. Iyqe nger this measurement process, referred to as a quan-
Sec. V, we consider the measurement process, define cof);

) . : ; .~ 7 tum trajectory, and this is given by the stochastic master
cepts of information and disturbance, and consider minimiz;, uation(SME) [6,20,29
ing the disturbance and maximizing the information. In Sec. q T

heredW is the Wiener increment for the intervdt. Using

VI, we examine the Hamiltonian feedback and obtain Hamil- dp=—i[H,p]dt—k[Q,[Q,p]]dt
tonians that minimize the instantaneous cost function. In Sec.
VII, we implement the feedback control of a two-state sys- +(Qp+pQ—2THQplp)v2kdW, 3

tem, showing how the ideas presented in the previous sec- ) o
tions manifest in the performance of the control algorithm.WhereH gives the system evolution in the absence of the
Section VIl summarizes and concludes. measurement. We can also readily obtain the nonselective

evolution, in which the measurement results are ignored, and
this is given by

Il. CONTINUOUS OBSERVATION AND GENERALIZED
MEASUREMENTS p(t+dt)= —i[H,p]dH—J Q,pQlda

We will concern ourselves primarily with continuous-time .
quantum feedback control, in which a system is observed =—i[H,pldt—Kk[Q,[Q,p(t)]]dt. (4)

continuously, and the results_ of the measurem(aht‘sr_nea-_ WhenH commutes withQ, this evolution leads to a diago-
surement recordused to continuously alter the Hamiltonian nalization ofp in the basis ofQ, as one would expect for
of the system to effect control. We now discuss how continu- easurements of. Similarly ir;tegrating the SME in this

ous observation may be described within the language q ase, one finds that the result in the long-time limit is a

generalized quantum measurements, implemented as pOSiti‘ﬁ?ojection onto one of the eigenstates@f Such a POVM
operator valued measuréBOVM's). realizes a continuous measurement of the oper@iasuch

Continuous measurements on a quantum system genergig,; yhe measurement record is a Wiener process.
a measurement record that is a continuous-time stochastic One can also define a POVM to provide continuous ob-

process, which g\gyzgeziitzhe(?aussighWierr]ler.pr?cess O servation in which the measurement record is a Poisson pro-
a point processs,6,20,21,2§ For a given physical system, cess. Since this requires only one of the two possible out-

thetse two kinds ct>f p;rocesses lw'”r:ef’u" fromﬁ;naklrlg Ollffer'comes at each intervalt, the POVM consists of only two
ent measurements, for example photon countingoint pro- measurement operators:

ces$ and homodyne detectidia Wiener procesgerformed

on optical beams. Qp=1-1kQ%lt, (5)
The key ingredient in describing continuous measure-
ments is that during an infinitesimal time stép the infor- Q,=Qkdt. (6)

mation obtained by the observer must scaldigaso that one

can take the continuum limit and obtain a sensible answeThat this gives a Poisson process can be seen by considering
[22-25,5,20,26—29 This may be realized by defining a the probabilities for the outcomes 0 and 1, which are 1
POVM, given byf Q! da=1, to describe the result of an —k(Q?dt and k(Q?)dt, respectively. Result 1 therefore
observation in the time intervalt by [22,24] corresponds to a Poisson “event,” which happens occasion-
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ally, and 0O to the absence of one. The SME corresponding tever, we will give an example of an explicit definition that
the measurement process is different from that correspondingptisfies these two properties. To motivate the first property,
to the Wiener measurement, but the nonselective evolution iwe note that as we have defined it so far, it is clear that the
identical. Physically, the nonselective evolution is fixed bystrength of a measurement in some sense characterizes the
choosing the interaction of the system with the environmentiverage rank of the operatdns, that make up the associated
that is mediating the measurement, and the trajectorPOVM (2,0 Q.=1). If all the Q,, are rank 1, then one
whether Poisson or Wiener, is selected by how one choosegways obtains a pure final state, and therefore complete in-
to measure the environment so as to extract the informatioformation, regardless of the initial state. The higher the rank
about the system. In fact, by taking a suitable unitary transef the projectors, the higher in general will be the von Neu-
formation of the Poisson measurement operators, and takingann entropy for a fixed initial state. The first property we
the appropriate limit in which there are many events in eaclwill require is that measurements that consist of rank 1 pro-
interval dt, one can obtain the Wiener process measuremenéctors should have maximum strengtbr measurements on
from the Poisson measurement, and so the first can be re-system of a given dimensipn
garded as a special case of the sec@®]29. This is also For the remainder of this paper, we will refer to measure-
discussed in detail ih15,30. ments for which at least one of tl&,, are rank 1 as infinite
The point we wish to note here is that regardless of hovstrength measurements. This terminology is natural in the
one chooses the trajectory, a continuous measurement of @antext of continuous observation, since in order to provide
observableQ is given by a POVM in which all the measure- rank 1 projections in a finite time from a continuous mea-
ment operatord),, are positive operators, diagonal in the surement, one would have to take the litit:o in Eq. (3).
basis of Q, and one must merely be careful to choose theHowever, we wish to stress that our use of this terminology
form of these operators with respectdbso as to provide a is not intended to imply that any explicit definition of mea-

sensible continuum limit. surement strength should necessarily take this value for these
kinds of measurements.
Ill. THE STRENGTH OF A MEASUREMENT The second property we wish to impose is that strength be

invariant under unitary transformations of the measurement

Clearly the more accurate the measurements of the oPerators. To motivate this property, one can consider a de-
server, the more information she is able to obtain, and th&ice that measures the spin of a two-state system. One would
better able she is to choose feedback to effectively contrgBXPect such a device to provide the same strength of mea-
the system. However, in general, more accurate measuréurement regardless of how it is oriented in space. Since
ments require more resources. A particular example is théPatial rotation covers all unitary transformations for a spin-
measurement of position by the reflection of a laser bearh@lf, for this system strength should be invariant under all
[13,34], a technique used in the atomic force microscope. IrHnitary transformations of thel,. We will explicitly con-
that case, it is the laser power on which the measuremergider the spin-half system later.
accuracy depends. In treating quantum feedback control, itis T0 provide an example of an explicit definition of mea-
sensible to consider a restriction on available resources, arfdirement strength for single-shot measurements on finite-
hence a restriction on measurement accuracy. To treat thfimensional systems, one can first consider the average un-
quantitatively, one must introduce a sufficiently precise no-<certainty after the measurement result is known. Using the
tion of the accuracy, ostrength of a quantum measurement. Von Neumann entropy, for a measurement described by

For the purposes of feedback control, since it is the finaBnQ1Qy=1, this is
state resulting from measurement that the observer must act
upon with feedback, it is the observer’s information about
this final state that is relevant. Intuitively, one can therefore
think of stronger measurements as providing, on average,
final states that are more purer, alternatively, have a wherep is the initial state of the system. Using the purity as

smaller von Neumann entropyhan weaker measurements. an alternative measure of uncertainty, we have
When considering continuous observation, in the absence of

uy(p)=2 TrQpQlIN(QpQlTIQ eI, (7)

any noise sources, an initially impure state is continually TH(Q pQT)z]
purified. In this case, the strength of the measurement can be Up(p)=1- > “—”T (8)
thought of as being proportional to thate of this purifica- o TrQp Q]

tion. Note that this concept of information extraction by a

measurement is quite different from that usually consideredVe can define the strength of a measurement to be the dif-

in quantum information theory. There, authors have beeifierence between the uncertainty in the initial state and the

concerned about the information that a measurement praverage uncertainty after the measureniest, the average

vides about the initial state of the systdthe state immedi- change in uncertaintyfor some fixed initial state. If we

ately before the measuremg®1,32, whereas in our case it choose the initial state to BéN, then this definition satisfies

is the information about the final state that is important. ~ our two properties. Using the von Neumann entropy this
We will not need an explicit definition for measurement gives

strength here, since we will only require two properties of

measurement strength that we will motivate below. How- sy=In(N)—uy(l/N), (9
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and using the purity sense they do not describe a measurement. This can be seen
from the fact that a unitary operator does not change the von
Neumann entropy of any state it acts upon, and consequently
extracts no information. However, unitary operations are pre-

in which N is the dimension of the system being measured. .

Definitions of measurement strength for single-shot meas:'s'GIy the kind that can be applied by Hamiltonian feedback.

surements may be extended to continuous measurements BYn_c'e, the unitary operators appearing i'n the polar decom-
using the initialrate of uncertainty reduction. Using the ex- position may be thought of as characterizing purely the feed-

plicit definitions given abovéEq. (9) and Eq.(10)], it is back part of the quantum operation. Note that we have writ-

straightforward to calculate this rate from E@) and the Ito (€N the polar decomposition so that the action of the unitary
rules for stochastic differential equatiof3]: operator follows after the action of the positive operator,
being a necessary condition for feedback.

Conversely, the positive operators characterize the acqui-

$p=(1—1IN)—u(I/N), (10)

giSv| ~8kVa, (11)  sition of information. They may always be written as a
t=0 weighted sum of projectors, and therefore thought of as pro-
viding partial information about the states in the basis in
Es :8_kv (12) which they are diagonal. When they correspond to rank 1
dt™P o N Q projectors, they provide complete information, in that the
final state is pure. Since the unitary part has been factored
whereVg, is the variance of in the initial state, being out to obtain the positive operators, we may regard these
operators as representing pure measurement; the change in-
Vo=TI[Q?*N]-Tr[Q/N]?. (13 duced in the quantum state is only that which is strictly nec-
essary in order provide the information obtained during the
IV. MEASUREMENT AND FEEDBACK measurement. We note that this decomposition of measure-

ments into unitary and positive operators has been consid-

In classical feedback control, it is natural to consider thegred before in the context of measurements of the first and
measurement process as being qualitatively different frongecond kind36].
the feedback process. In particular, they may be distin- From this it is clear thaeveryquantum evolution can be
guished by the fact that the measurement in each time stegalized by a measurement in which the measurement opera-
involves no change to the system Hamiltonian, and the feedprs are positive, followed by a feedback step in which the
back step provides no information. In quantum feedbackHamiltonian is chosen to depend upon the measurement re-
since measurement has the ability to affect the dynamics igy|t. we see that the observation of a single observable, con-
ways that in classical mechanics would have to be attributedidered in Sec. II, corresponds to the special case in which all
toa Hamiltonian, the distinction is not as fundamental. HOW-the positive operators forming the POVM are mutua”y com-
ever, in the vast majority of quantum feedback schemes conmyting.
sidered to date, it is some set of parameters describing the under the above definitions, damping processes, such as
system Hamiltonian that are under the observer's controlgavity decay and Brownian motion, are not considered pure
This is motivated by practical considerations, since it is as Ofneasurements; they are viewed as equiva]ent to a fixed com-
yet easiest experimentally to externally control aspects of thgjnation of measurement and feedback. Since the object of
Hamiltonian. In this case, the feedback step involves no megeedback control is to limit the deviations of a system from a
surement, and the observation and feedback processes m@ysired statéor more generally, from a particular evolution,
be regarded as qualitatively different, as in the classicajyhich means merely that the target state changes with time
theory. In view of this, the polar decomposition theorem MO-feedback control is essentia”y a dampmg procesward
tivates some definitions. the target state

By Kraus's representation theordBb], every valid quan- The polar decomposition theorem therefore fits snugly
tum evolution(a quantum operatignmay be written as a wjth the structure of Hamiltonian feedback, but it is never-
POVM given by a set of operatof3,, , where the probability  theless important to realize that this is not the only feedback
of each outcome i®(n)=Tr[Q/Qp] and the state result- process that may be considered in quantum mechanics. First
ing from each outcome iﬁn:anQyP(n). The only con-  note that the product of two positive operators need not be
straint on the),)’s is that=,Q[Q,=1. However, from the positive. Hence the evolution resulting from a sequence of
polar decomposition theorem, each of the operatbrsay  pure measurements as defined above will in general be
be written as the product of a unitary operator and a positivequivalent to a single pure measurement followed by some

operator, so that Hamiltonian evolution(i.e., both measurement and Hamil-
tonian feedback This is an illustration of the fact that quan-
Q,=U vQ Q. (14)  tum measurements involve “active” transformations of the

states, as opposed to the “passive” measurements of classi-
This provides a natural decomposition of a general quanturoal physicg 14].
operation in terms of measurement and feedback. Consider Consider now the full evolution of a system under Hamil-
first the action of the unitary operators. By themselves theyonian feedback control in a single infinitesimal time stkp
do not describe the acquisition of information, and in thatwith initial statep. Since all dynamical processes commute
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to first order, one can treat even continuous feedback contrghaximum eigenvalue) nay(, . Of the initial statep. To see

as alternating steps consisting of measurement and feedbagkis, we first note that since all the eigenvalues of the final
This is consistent with the general approach of this paperstate,\;, are a weighted average of the eigenvalueg of
which is to consider the two steps separately. The systeone can be larger than the largest eigenvalug.oNow,

evolves under its own “free” HamiltonianHy (which in - writing the fidelity in terms of the eigenvectors pf, | ;)
many cases will be the desired evolutipand is affected by e have

a source of environmental noise, which can be described by

the nonselective evolution generated by a POVM. The mea- )

surement is also performed, and the feedback evolution ap- <¢T|Pf|$T>:Z Nil(eylyn)l”. (17)
plied. For a given measurement resaltwe may write the .

full evolution as Since=;[(¢;|¢r)[?=1, the fidelity is merely a weighted av-

erage of the eigenvalues pf, which proves the result. In
p,e (fntHodt (15  fact, choosing any basi#;), we obtain the probability dis-

Bn:e_i(H”+H0)dtPn( 2 WIPWT
j tribution over these states as

where the tilde indicates that we have not bothered to nor-

malize the final state, and; are the operators describing the wi={ilpel ) = 2 Xij\j» (18)

(undesirablgaction of the environment. Since all the opera- J

tors always commute to first order @t, we have combined U2 o PP S

the free Hamiltonian with the feedback Hamiltonian in thev_vhere Xij _Kd’_l' ¢'>! . Since the matrixy;; .Sat'Sf'eSE.'X'J
=1 and2x;;=1, it is a doubly stochastic map, with the

exponential. The task of feedback control is to choose opera- 1 i .
tors P, andH,, such that the evolution is closest to the de- result that the vectofy;} is majorized by the vectoh;},

. . . : .. . and hence the von Neumann entropy of the distribution over
sired evolution. Before we consider this for Hamiltonian anv set of basis states is alwavs at least as large as the dis-
feedback, let us examine what can be done in the absence ofy y 9

the conditional unitaries, using measurement alone, and tl}trlbutlon over the eigenvectors. Another way of saying this is

difference between the two kinds of feedback. Rat dlagon_al elements of a maitrix resultlng_from a unitary
transformation performed on a diagonal matrix are always at

By the definition above, using measurement alone, one i . o L
restricted to POVM'’s in which all the measurement operaﬁaaSt as uniformly distributed as the original elemefatsd

" : . . almost always more $0
tors are positive, along with some overall unitary evolution Y 3

independent of the measurement results. Now, to evaluatelsglﬁzigst?c"sr rri\sil;tfg; t?neegssgn?ggtg d i% nv%?cfr;nsalljggghg/ent
the efficacy of the control procedure, we must have a “cos P ' q

c . measurements aret conditioned on the results of previous
function” that measures how well we have achieved the con- P

L . . . .~ _measurementsi.e., for pure measurements with no feed-
trol objective, as discussed above in the Introduction. Sinc : .
) . . _ : . ack. However, it does not hold for sequences of condi-
we have a desired “target” state=|¢)(¢r| in mind at = , A
. ) ) X . tional measurements. In this case, the initial state seen by
some final timgto be achieved following a single measure- )
; - ) subsequent measurements cannot be written as the state
ment, or a series of measurementensible cost functions . . -
) . . . given by averaging over the results of previous measure-
will provide a measure of how close the final stateis to

the target state. A number of measures are possible such msents, since each final state may have a different measure-
Y ' P y Sent performed on it.

the inner product (Tpo]), the fidelity (Tf vo==p;o™]), It turns out that if we allow ourselves an infinite measure-
or the distinguishability((1/2) T p¢— ). Since we are in- ot strength, then the upper bound on the final entropy

tgrested only in target states t_hat are pure, the fidelity igoryeq apove can always be achieved in the limit of an
simply the square root of the inner product, so that they

id val oo bl ™ h hi infinite number of measurements. To see this, one simply
provide equiva ent optimization pro ems. throug 'ou.t iS¢y ows the procedure of Aharonov and Vardi, referred to as
paper, we will use these as the quantities to be optimized.

. . ) he “inverse quantum Zeno effect,” developed in REg8].
Now, the final state resultl_ng f_rom averaging the results Olconsider first an initial pure statgy). We can always write
a single pure measurement is given by the target state as a superposition of the initial state and a
state orthogonal to the initial statey), . That is, we can

pi=2> PnpPy. (16)  write
n

. . yr)=c0g 0)| ) +sin(0)e' | (19
Since P,=P/, Ando’s result[37] states thap; is always ) ) 424
majorized byp, which means that the eigenvaluespgfare  for some value of9 and ¢. Now consider the projectd®,

at least as evenly distributed as the eigenvalueg.ofhis =|e)(e| onto the state

means that the von Neumann entropypefis always at least

as large as the entropy of Another way of putting this is |e)=code)|y)+sin(e)e' ?|y), . (20)
that each eigenvalue @f; is some weighted average of one

or more of the eigenvalues @f For =0, this is the initial state, and far= 6, this is the

It follows almost immediately from the above results thatfinal state. For any value in between, this state represents a
the fidelity of the final state cannot be any larger than theotation through an angle from the initial state to the final
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state. IfP,=|e)(e| makes up one of the operators describingcannot be simulated reliably. One can expect therefore that
the measurement, the probabilityfafling to obtain the state real applications will find the use of Hamiltonian feedback
le) is invaluable.

i _ .2
P(e)=sir(e)=e’+---. (21) V. MEASUREMENT: MAXIMAL INFORMATION

. . . AND MINIMAL DISTURBANCE
If we succeed in obtaining the state), then in that mea-

surement step we have succeeded in rotating the state In Sec. lll, we introduced the concept of the information
throughe toward the desired state. We can attempt to rotatgrovided about the system by a measurement, and this in-
the state through the full radians by choosing=6/M and  volved specifically the information regarding the stedsult-
repeating the process usiMymeasurements. Since the prob- ing from the measurement, a definition motivated by feed-
ability of failure at each step is then second order i)/  back control. This in turn motivated the definition of the
while the number of steps scales onlyMsas the number of ~strength of a measureme(igtg.,s, or s,), important because
steps tends to infinity, the total probability of failure tends toit constitutes a natural constraint when considering the opti-
zero, and in this limit one achieves the desired rotation. Tanization of control strategies. However, the actual informa-
see that this achieves the upper bound when the initial statéon provided by a given measurement is not only a function
is mixed, we choose the projector so as to rotate the eigersf the measurement strength, but also the state of the system
vector ofp corresponding to the maximum eigenvalue to theimmediately prior to the measurement. As a result, once the
desired state. For each measurement, the correspondidyailable measurement strength is known, one can ask how
POVM is then given, in general, byas_+z|Q|TQ|:1, to optimize the information provided by the measurement
' given the current state of the system. This defines the con-
cept of a measurement returning maximal informatifam a
fixed measurement strength
N In addition to providing information, quantum measure-
2 )\n|n><n|} 22) ments can _also introd_uce noise, a stat_ement that we \_/viII now
n=2 ’ make precise. Consider first a classical system driven by
noise. One can characterize the extent of the noise in some
time interval by the increase in the entropy of the phase-
Csi[A]ZPaiAPgiJFE QAQ, (23)  space probability distribution for the system state that is
! given by averaging over the noise realizations. This tells us
how much we expect the noise to spread out the system in
hase space in that time interval, and characterizes our un-
ertainty about the future state of the system resulting from
he noise. Now consider a classical measurement. Since the
initial state is uncertairor else we would not need to make

whereP, is the projector for theth measurement, and the
(), are arbitrary. The final state may then be written

M

M
pf:H ‘Csl[)\l|1><1|]+1_|[ Lsi

wherep|n)=\,|n), with \; the maximum eigenvalue, and

A is an arbitrary operator. As the number of measurement
tends to infinity, the first term on the right-hand side of Eq.t
(22) becomes

M the measurementthe result of the measurement is random,
. _ and as a result one’s state of knowledge changes in a random
,J.ITOCH Lol DXL =Nl )yl (2% tashion. However, this random change should not be consid-

ered noise, since if one averages over all the possible mea-

Since this term contributes,(p) to the fidelity, and since Surement result&ll the possible random changeghe prob-
ability distribution for the state of the system remains

the other pure states making up the final density matrix can® g ) . d
not contribute negatively, the upper bound is achieved. unchanged. This is the sense in which classical measurement

What happens when we allow ourselves infinite measurelnfroduces no noise into the system. ,
_Now consider a quantum system driven by noise. The

ment strength, and sequences of measurements in which sub- " T .
sequent measurements arenditionedon previous results €duivalent of the phase-space distribution is the density ma-
(i.e., measurement-only feedba@kn that case it is clear that tiX- In the same manner, one can characterize noise by the
the desired state can always be obtained with certainty; ongsulting increase in the von Neumann entropy of the density

begins by making a projection measurement in an arbitrar)'?qat,rix resulting from averaging over the possib!e n_oise real-
basis, which results in a set of pure states. Then the abovgations. One can therefore characterize the noise introduced

procedure is used to rotate the resulting state to the target2Y & quantum measurement by calculating the increase in the
When infinite strength is available, measurement-only’°n Neumann entropyor alternatively the decrease in the

feedback is equivalent to Hamiltonian feedback, since botfRUrty) of the density matrix that results from averaging over
allow any state to be created. However, in many continuougqe possible measurement results. While we saw above that

feedback control applications, the strength of the measurdD the classical case the measurement introduces no noise,

ment is unlikely to be so much stronger than either the enthiS iS not, in general, true for quantum measurement. In

vironmental noise or the free system dynamics that it can b&"MS Of the von Neumann entropy, the excess noise intro-
used in this fashion in place of Hamiltonian feedbackduced by a measurement is

[1,39,40. With measurements of finite strength, the out- v

comes are necessarily random, so that Hamiltonian feedback Ne =Sv(pr) —Sv(p). (29
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Defining it in terms of the purity, we have only two measurement operators where each is the sum over
only two projectors. To obtain a continuous measurement of
NB="Tr[ p2]—Tr p?]. (26)  a given observable, the POVM is given Wy3+Q2%=1,

where the measurement operators are
This makes precise the intended meaning of our initial state-

ment that quantum measurements can introduce noise. Note Qo= k|0)(0|+ V1—«|1)(1], (28
that this has nothing to do with the Heisenberg uncertainty
principle, what concerns us here is the uncertainty of the Q4= Vk|1)(1]+ 1 «|0)(O| (29

future quantum state, and not the uncertainty of some set of

observables for a given state. Recall that this is because tfie which x=1/2+ \kdt, and|0) and|1) are the eigenstates
object of the control is the state of the system, and it is up t®f the observable. In each time stép this produces one of
the observer to decide what the desired state is. Whether it bo results. The sum of these, in a time interddk= Ndt in

a minimal uncertainty state in the sense of the Heisenberg/hich N results are obtained, is naturally governed by the
uncertainty principle is immaterial. binomial distribution. In the limit of largeN (and infinitesi-

Let us consider first the question of minimizing the dis- mal At), this tends to a Gaussian, and one obtains the mea-
turbance due to the measurement. Recall that for a pure meadrement recorfEq. (2)] and SME[Eq. (3)] given in Sec. I,
surement, the evolution given by averaging over the meawhere the measured observaijle-|0)(0|—|1)(1|. We can
surement results is given by E@L6), where all theP,, are  alternatively think of this measurement as a single-shot mea-
positive operators. Once again invoking Ando’s result, wesurement, and in that cagecan take any value between 0
have that the von Neumann entropy of the final state is neveand 1. Note that whem=0 or k=1, the measurement is
decreased by the measurement. Measurements that minimigae of infinite strength. Asx becomes closer tg, the
noise are therefore the measurements that leave the von Nestrength reduces, and far=3 the measurement provides no
mann entropy unchanged. These measurements are in thigormation.
sense most like classical measurements. A set of measure- We can obtain measurements of all possible observables
ments satisfying this criterion are those in which all ¢ by applying to the measurement operators an arbitrary rota-
commute with the initial density matrix. In this case we havetion over the Bloch sphere, given by the unitary transforma-

tion

pi=2 PupPn=2 Pip=p. 27 U(6,$)|0)=cog 612)|0) + e sin(612)|1),  (30)

= —aidgj
In the language of continuous measurements, since the op- U(6,4)[1)=cod6/2)|1)—e'?sin(6/2)[0). (3D
tehr_atorsPn ari dlagonill in the elgenbabss of thet?]bfe?]’ableRecall that this unitary transformation of the measurement
IS means cnoosing 1o measure an observable that s ares&%rators preserves the measurement strength as defined in

eigenbasis W'Fh the density matrix. . Sec. lll. Without loss of generality, we can choose the initial
On a practical note, for continuous observation, measur

. . : . o > ~'density matrix to be diagonal, and write it @as=p|0)(0
ing in the eigenbasis of the density matrix involves cont|nu—+(1_);))|1><l|_ One can %hen obtain an anaI?ticrt)a'xggelsion

ously changing the measured observafslete that such a . : SN
process has been considered previously in the context c];?r the final average purity, which is given by

_adz_aptwe measuremen_iél]). In many situations, this flex- 1 TLUQIUTHUQ,U?]

ibility may be only partially available, or not at all. However, IP=1-u,= n _ (32)

the above analysis indicates that for the purposes of noise = Tr[UQﬁUTpUQnUT]

minimization, one should choose the measured observable to

be that in which the system is diagonal, or nearly diagonalThis expression is fairly complex, and we will not need it

for the longest time during the period of control. In fact, this here. (For a detailed analysis of this expression, including

introduces the possibility that in certain cases it may be deanalytic expressions for general two-outcome measurements

sirable to turn off measurement for periods in which the syson two-state systems, the reader is referred4t).) It is

tem occupies states that have large off-diagonal elements gxplicitly independent ofp, as one would expect, since it is

the eigenbasis of the observable. Of course, the resulting alone that gives the anglen the Bloch sphejebetween

noise reduction would have to be balanced against the a¢he basis in which the density matrix is diagonal and the

companying loss of information. basis of the measured observable. The final average purity is
Maximizing the information for a fixed measurement then explicitly dependent on the three paramepeks and#,

strength is a much more difficult problem. Here we will ex- and we are concerned with maximizing this with respect to

amine a specific example for the continuous measurement ¢f. When the measurement is nontriviak£0.5), the

a two-state system. In the formulation of continuous meastrength of the measurement is finite#£ 0,1), and the initial

surements that was discussed in Sec. I, we used measurgate is impurg p  (0,1)], one finds that the location of the

ment operators where each was a sum over an infinite nunmaximum is independent op and k, and occurs foré

ber of projectors. For a two-state system, it is possible to= 7/2. This means that on average the maximum informa-

obtain the same result.e., the same continuous measure-tion is obtained about the final stat®r fixed measurement

ment driven by Gaussian nojskey using a formulation with  strength when the basis of the measured observable is maxi-
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mally different from the eigenbasis of the density matrix a function of the observer's estimated stéamd the target
(i.e., if the density matrix is a mixture ef, eigenstates, then statg at that time. Since the estimated state, in general, de-
one should measure, or o). pends upon the measurement record up until that time, the
We see then that at least for a two-state system, the minfeedback Hamiltonian depends ultimately upon the measure-
mal disturbance is obtained when the measured observabieent record, and this is what makes the procedeeeback
has the same eigenbasis as the density matrix, and the maxientrol. The observer’s estimate of the state of the system at
mal information is obtained when the two bases are maxitime t is some density matrixp(t). To obtain the true best
mally different. Thus we obtain the result that, at least for aestimate, the observer will integrate the SME for the system
two-state system, there is a tradeoff between information andnder observatiorinaturally including the dynamics given
disturbance in quantum feedback contfial contrast to clas- by the feedback histojyusing the measurement record. Al-
sical feedback contrpl This tradeoff for finite strength quan- ternatively, if this is too time-consuming, the observer might
tum measurements is also of interest from a purely fundause some suboptimal estimation procedur4].
mental point of view, and this is explored in detail in Ref.  We will chose the feedback Hamiltonian at timéo be
[45]. We plot both the excess noise introduced by the meathat which will, in the next infinitesimal time step, maximize
surement and the average final purity resulting from the meathe fidelity of the current state estimate with the current tar-
surement as a function df in Fig. 1. For a fixed measure- get state. Naturally, this will define a continuously changing
ment strength, one therefore has the choice betweefeedback Hamiltonian. Denoting the state at tinsgmply as
choosing a measurement to minimize the noise, and consg; the state after an infinitesimal time step is given by
quently obtain better control of the systéim that the system
will fluctuate less around the desired valuer obtain a more pi=p—i[H,p]At=3[H.[H,p]l(A)*+---, (33
accurate knowledge of the system at the expense of increased o ) )
noise. Which is most desirable may well depend upon thdvhereH denotes the feedback Hamiltonian at titrieve will
current state of knowledge. For example, if the state of th&iSually suppress the time argument for simplicity what
system is poorly known, perhaps early on in the control pro_follows,_ we will refer to the state after the_ |n_f|n|te5|mal step
cess, then it may prove desirable to obtain information moréS the final state, although, naturally., this is JUSt. another state
quickly, at the expense of introducing extra noise, since thdhat the system passes through during the period of control.
large uncertainty will be the major factor in reducing the The fidelity of the final state with the target state is then
effectiveness of the feedback. However, once the observer’s ,
knowledge is sufficiently sharp, it may prove more effective (Wrlpelyr) =l plgor) —iu|[H, p ][ frr) At
to reduce the noise at the expense of some added uncertainty. — 3(yr|[H.[H,p] ) (AD) %+ - - . (39
In Sec. VII, we will present simulations to show how this
information tradeoff affects the performance of feedback The first term is fixed, so to maximize the fidelity we
control in a two-state system. should maximize the coefficient aft, being the dominant
term. If the target state commutes with then this term
V. A SUBOPTIMAL HAMILTONIAN FEEDBACK vanishes for alH, so that we cannot choose a Hamiltonian
ALGORITHM that will cause an increase in the fidelity that is first order in
time. If this situation occurs only for vanishingly small
Here we consider a feedback algorithm in which the feedtimes, then it will make effectively no difference to the feed-
back Hamiltonian will, at each point in time, be chosen to beback performance. However, in those special situations in
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which the intrinsic dynamics preserves the commutivity of (Yr|H(p—N7DH| ). (42)
p(t) and the target state, it can be important to choose a
Hamiltonian that maximizes the term that is second order ifNow, denoting the eigenvalues pfby X\, (ordered in de-
time. One should note, however, that if one has freedom tereasing order the eigenstates by), and denoting the tar-
choose the measurement basis, one can always choose a bat state as the eigenvector with- M, the above expression
sis that disturbs the state so as to break the commutivity dbecomes
p(t) with the target state, eliminating the need to consider
the second-order term in the time evolution. N 5

The maximization must be performed under a reasonable <¢T|HPH|¢T>:HZ:L (M= AwKnHIM)E. (43
constraint on the eigenvalues éf (i.e., a constraint that
captures the concept of a limitation on the strength of feednow, the constraint on the feedback Hamiltonian may be
back. A number of suitable constraints are possible, such agyitten
a restriction on the maximum eigenvalue ldf the sum of
the norms of the eigenvalues, the sum of the squares of the
eigenvalues, etc. Here we choose to use the last of these TI{H?]=Tr ; |n)<n|H% |m)(m[H
constraints, namely

= 2_
> Ma(H)?=p. (35) % [(n[H[m)[*= a, (44)

n

being a constraint on the sum of the square magnitudes of the
elements oH. Only the subsefn|H|M)|? of these, withn
# M, contributes to the expression to be maximized. To ob-
tain the maximum value for the expression, we must there-
A=i| ) o] —ilv) ] fore set all the elements &1 that do not contribute to it to
' zero, this allowing the contributing elements to be as large as
0)=p|¢r). (36) possible. The constraint then becomes

To maximize the coefficient aAt in Eq. (34), we first note
that it may be written as the operator inner produgtHiA],
where

N

The maximum of the inner product, under the condition that > [(n[H|MYP=ul2 (45)
n#M 1

the norms of the operators are constrained, occurs when the
operators are alignedi =cA, wherec is in general a com-
plex number, but real in this case to preserve the Hermiticitywhere the factor of one-half is enforced by the Hermiticity of

of H. With this inner product, the norm d is H. The expression can now be seen as an average of the
eigenvalues of p over the “distribution” P(n)
THH2]= S N, (H)?2 37) =|(n|H|M)[?, which is normalized tqu by the constraint.
n .

The maximum value is therefore achieved when all the

. weight of the distribution is placed on the term with the
Naturally, we take the maximum value allowed under thelargest eigenvalue. The solution is therefore

constraint, setting TH?]= . This fixes the magnitude of
the proportionality constant, and results in the following |<l|H||\/|>|2=|<M|H|1>|2=,u/2, (46)
explicit construction for the feedback Hamiltonian:
) with all other elements zero. The explicit construction for the
H(p(t), [¢r(OD=1x[[¢r (D) (r(D].p(D]. (38 resulting feedback Hamiltonian is

where we have included the time dependence explicitly, and H(p(),| (D))= \/#_/2[|1><¢T(t)|+|l//T(t)>(1|]-

where
) Note that this assumes that the target state is orthogonal to
X~ m’ (39 |1), being the eigenvector with the largest eigenvalue. If the
|1) is the target state, then there exists no Hamiltonian evo-
with lution that will increase the fidelity, since the fidelity is the
maximum it can be given the current purity pf In that
a(t)=(yr(V)]p?(D)] (1)), (40)  case, we are free to set=0 for that time step.
It is worth noting that since the magnitude of the feedback
b(t)={yr(t)|p(t)|r(1)). (41 Hamiltonian and the strength of the continuous observation

are uniformly bounded, the evolution of the system is con-
It now remains to maximize the coefficient oA()? in  tinuous. Given this, since the feedback Hamiltonian is a con-
Eq. (34). Recall this is only required under the condition thattinuous function of the system state, it is intuitively clear that
the first term is zero, which implies that#)=\1|#7). In  the feedback algorithm is well-defingdnd continuousin
this case, the expression for the coefficient may be written athe continuum limit for almost all sample paths.
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We now have a feedback algorithm that can be used inVIl. FEEDBACK CONTROL OF A TWO-STATE SYSTEM
conjunction with a measurement strategy for feedback con-
trol. In the next section, we will implement such a strategy
for the control of a two-state system.

In the previous sections we have considered the measure-
ment and Hamiltonian feedback parts of the control problem

Having found a continuous feedback algorithm by maxi_separately. This resulted in a straightforward choice for a

mizing the fidelity at each time step, it is natural to ask whatCHr?(;Fégog ??hferggggﬁrglr?;ﬁhg;a?gt dld_l_?](i); rvszglﬁaglcgtfslza\:ve
one should do given &nite time in which to perform the 9y-

feedback. That is, we can imagine a situation where Ong:t:seaealeir:?o:(rjnez;itg |2nt(;1e dgtiisggirgeEteggz(;is%?tgiasdetﬁg
observes the system for a finite time, and then has a finit ' '

time in which to perform a unitary transformation to bring ﬁfé'lmil) (:T;eae?:gimg:tthsetr?ég%)\//ef(;;r:n gthflviﬁgltl)?:?gptr:z
the system as close as possible to the target state. ea)guremgnt ang) feedback. For exar?] le, if the feedback
Denoting the state of the system at the beginning of th ' pe,

- o . amiltonian is relatively strong, then it is likely that it will
finite feedback step ap, the fidelity with respect to the be able to effectively counter the disturbance introduced by
target state at the end of the feedback step is given by

the measurement, and therefore the measured observable
should be chosen to provide maximal information and the
F(ps,0)=Tr\p*?op*?], (48) expense of maximal disturbance. When this is not the case,
the most desirable measurement is likely to be that which
where o=|¢1){( 7| is the target state and is the unitary introduces less disturbance at the expense of providing re-
transformation constituting the feedback. We wish to fihd duced information.

to maximizeF(p¢,o0). Observing first that, for arbitranp To examine the performance of a feedback control algo-
and unitaryV, rithm, we must run the algorithm many times in order to
obtain the average behavior. This is computationally very

max Tr[AV]| = maxTr[ VATAV' V]| expensive, and so we use massively parallel supercomputers

v v that are ideal for this task. The results we present here are

obtained by averaging 1000 realizations of the control algo-
rithm.
To provide a simple example of feedback control, we con-
sider a spin-half system precessing in a magnetic field
=TI \/M], (49 aligned along the axis[43,44]. In the absence of any noise,
a spin aligned originally along the axis would rotate at a
where we have used the po|ar decomposition theorem fcﬁonstant angular VelOCity around thaXiS, and we take this

A(A= mV'), and the o(A) are the eigenvalues of to be the desiredtarge} behavior. To provide the control
JATA. SettingA=p1’201’2 tr:is gives problem, we subject the spin to noise that dephases it around

f the z axis (this could arise from fluctuations in the magnetic
field). The master equation describing the frgait noisy
evolution of the spin is thus given by

= ma% > oj(A)e'’
J

Y

F(ps,0)=maxTr[ (UpU") V2 2V]|
\Y

b=—iﬁw[az,p]—ﬂ[az,[az,p]], (52)

where w is the precession frequency in the magnetic field
(50) and g is the strength of the dephasing noise. To implement
feedback control, we allow the observ@vho is also natu-

where the final inequality uses the result by von Neumanﬁal!y the cpntrolle} tc_) measure the spin along an arbitrary
[42]. In the last linex;(p) and\(o) are the eigenvalues of spin directionv(t), with measurement constakitand apply

p and o, respectively, ordered such that the largest eigeng feedback Hamllton|aanb(t)_, obtaln.ed using the algo_-
value of p multiplies the largest eigenvalue ot the second rithm presented in the preceding section. The full evolution

largest the second largest, and so on down to the smalleg{ the cc;ntrodllc;:‘rs’dztatﬁ c.)f tl;novvfledge, including the mea-
eigenvalue of both states. Now we need merely realize thatirement and feedback, 1s theretore

— mva)4Tr[Upl/2U To_l/ZV] | < ; )\j(p)lIZ)\j(o_)lIZ'

we can achieve the upper bound by choosihgso as to _ _

diagonalizep in the basis ofo, reordering the basis states dp=—ihlo,+H(0),pldt=los Lo, p]ldt

such that the largest eigenvaluegis attached to the eigen- —KLoyw [ oy .p]1dt

state ofo with the largest eigenvalue. Writing the eigenstates

of o as|a;) (with eigenvalues ordered by sizend those of +V2K( avptPovy =2 Tloyyplp)dW.  (53)

p as|p;) (similarly ordered, then the explicit construction

for the optimalU is We now simulate the dynamics resulting from the feed-

back control loop for different values @, being the angle
between the eigenbasis of the instantaneous system density
UZZ |crj><pj|. (51) matrix gnd the mstantaneous.measlured observable, as dis-
] cussed in Sec. V. For these simulations, the strength of the

062306-10



INFORMATION, DISTURBANCE, AND HAMILTONIAN . .. PHYSICAL REVIEW A 63 062306

0.95r
0.941
3 2 : :
0.93} ; 5 $ ¢
) L
= 0.92% ¢ itydi
g % FIG. 2. The average puritydiamond$ and
b= $ $ ¢ fidelity (circles of a feedback control algorithm
g0.91f ¢ i
g : % for different measurement anglés The param-
-%’ eters are precession frequerfcy = 7, measure-
= 09 § ment constank=2, noise strengtt8=0.4, and
- feedback strengtlx = 10.
0.89- %
b3
0.88F
0.87 1 1 1 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16
0 (radians)

magnetic field is such thdtw=m, so that the spin rotates cepts are motivated by the feedback control problem and to
once in a time intervat=1. The noise strength i8=0.4,  explore the question of optimization in this simplified prob-
and the parameters for the control loop &e?2 and feed- lem. A concept that arises immediately in considering feed-
back strengthu=10. We start the system in a pure state withback control is the strength of a measurement. This strength
the spin pointing along the direction, and evolve the con- quantifies the amount of information that a measurement
trolled dynamics for a duration df= 2 (the purity and fidel-  provides. Previous definitions of the information provided by
ity settle down to their steady-state behavior by approxi-quantum measurements have focused on information regard-
mately t=0.8). Averaging the fidelity and purity over the jng the state prior to the measurement. Here we have argued
full length of the run, for different values a@f we obtain Fig.  that it is the information regarding the statsulting from
2. Examining the dependence of the purity @hwe find  the measurement that is relevant to quantum feedback con-
what we expect from the discussion in Sec. V. That is, thero|, and we introduced a concept of measurement strength
average purity of the system increases withachieving a accordingly.
maximum até= /2. This reflects the fact that, on average, Since measurements disturb quantum systems, it is impor-
measurements with a larger value @fextract information  tant to understand how this relates to feedback control. We
from the system at a faster rate. showed how it is possible to quantify the concept of the
The behavior of the fidelity, in this case, is similar to that noise introduced by measurements in a way that is relevant
of the purity. As 6 increases, the feedback is sufficient to to feedback control. One finds that while classical measure-
ensure that even though we can expect the noise to increaggents do not introduce noise, quantum measurements in gen-
with #, the increase in purity has more of an effect on theeral do, although it is possible, at least in principle, to make
fidelity than the noise. The result is that, with these re-continuous quantum measurements that are noise-free.
sources, it is best to chooge= /2 (so as to measure in a  Having arrived at precise concepts of information and dis-
basis maximally different from that which diagonalizes theturbance, we examined the special case of continuous mea-
density matriy. However, from our previous analysis of the surements performed on a two-state system, and found that
tradeoff between information and disturbance, we cannot almaximization of information and minimization of noise were

ways expect this to be the case. mutually exclusive goals, implying the existence of an
information-disturbance tradeoff in quantum feedback con-
VIIl. CONCLUSION trol. This highlights the complexity of the control problem.

We also considered the Hamiltonian feedback part of the

In this paper, we have considered the problem of controlcontrol process. Defining the cost function as the fidelity
ling a quantum system in real time using feedback condiwith a target state, and the feedback strength as the norm of
tioned on information obtained by continuous observationthe Hamiltonian, we were able to obtain the Hamiltonian
The question of how to effect the best control given thegenerating the optimal instantaneous feedback.
system dynamicsincluding environmental noi$eand con- Here we explicitly consider control realized by choosing
straints on available resources is highly nontrivial. Here wedynamics conditional upon a measurement process. Because
considered a simplified problem in which we examine theof this, one can refer to this technique as using a classical
measurement process and the resulting Hamiltonian feedaontroller, since it works by taking a classical procése
back separately. Our purpose was both to examine what comeasurement recordand altering the system Hamiltonian
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accordingly, all of which can be achieved by a classical syshow quantum measurement may be exploited in the manipu-

tem. It is therefore worth noting that, so long as we arelation of quantum systems, and as quantum technology ad-

considering the dynamics of the controlled system alone tgances, we can expect that this question will become increas-

be the important quantity, this is equivalent to control that isingly important in practical applications.

realized by connecting the system, via an interaction Hamil-

tonian, to another quantum system, where this second system

is large enough to be treated as a Hdth|. In general, using ACKNOWLEDGMENTS
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