A key ingredient of cavity quantum-electrodynamics (QED) is the coupling
between the discrete energy levels of an atom and photons in a single-mode
cavity. The addition of periodic ultra-short laser pulses allows one to use
such a system as a source of single photons; a vital ingredient in quantum
information and optical computing schemes. Here, we analyze and ``time-adjust''
the photon-counting statistics of such a single-photon source, and show that
the photon statistics can be described by a simple `transport-like'
non-equilibrium model. We then show that there is a one-to-one correspondence
of this model to that of non-equilibrium transport of electrons through a
double quantum dot nanostructure. Then we prove that the statistics of the
tunnelling electrons is equivalent to the statistics of the emitted photons.
This represents a unification of the fields of photon counting statistics and
electron transport statistics. This correspondence empowers us to adapt several
tools previously used for detecting quantum behavior in electron transport
systems (e.g., super-Poissonian shot noise, and an extension of the
Leggett-Garg inequality) to single-photon-source experiments.Comment: 8 pages, 3 figure