5,356 research outputs found

    Entanglement of identical particles and reference phase uncertainty

    Get PDF
    We have recently introduced a measure of the bipartite entanglement of identical particles, E_P, based on the principle that entanglement should be accessible for use as a resource in quantum information processing. We show here that particle entanglement is limited by the lack of a reference phase shared by the two parties, and that the entanglement is constrained to reference-phase invariant subspaces. The super-additivity of E_P results from the fact that this constraint is weaker for combined systems. A shared reference phase can only be established by transferring particles between the parties, that is, with additional nonlocal resources. We show how this nonlocal operation can increase the particle entanglement.Comment: 8 pages, no figures. Invited talk given at EQIS'03, Kyoto, September, 2003. Minor typos corrected, 1 reference adde

    Measuring measurement--disturbance relationships with weak values

    Full text link
    Using formal definitions for measurement precision {\epsilon} and disturbance (measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has shown that Heisenberg's claimed relation between these quantities is false in general. Here we show that the quantities introduced by Ozawa can be determined experimentally, using no prior knowledge of the measurement under investigation --- both quantities correspond to the root-mean-squared difference given by a weak-valued probability distribution. We propose a simple three-qubit experiment which would illustrate the failure of Heisenberg's measurement--disturbance relation, and the validity of an alternative relation proposed by Ozawa

    All-optical versus electro-optical quantum-limited feedback

    Get PDF
    All-optical feedback can be effected by putting the output of a source cavity through a Faraday isolator and into a second cavity which is coupled to the source cavity by a nonlinear crystal. If the driven cavity is heavily damped, then it can be adiabatically eliminated and a master equation or quantum Langevin equation derived for the first cavity alone. This is done for an input bath in an arbitrary state, and for an arbitrary nonlinear coupling. If the intercavity coupling involves only the intensity (or one quadrature) of the driven cavity, then the effect on the source cavity is identical to that which can be obtained from electro-optical feedback using direct (or homodyne) detection. If the coupling involves both quadratures, this equivalence no longer holds, and a coupling linear in the source amplitude can produce a nonclassical state in the source cavity. The analogous electro-optic scheme using heterodyne detection introduces extra noise which prevents the production of nonclassical light. Unlike the electro-optic case, the all-optical feedback loop has an output beam (reflected from the second cavity). We show that this may be squeezed, even if the source cavity remains in a classical state.Comment: 21 pages. This is an old (1994) paper, but one which I thought was worth posting because in addition to what is described in abstract it has: (1) the first formulation (to my knowledge) of quantum trajectories for an arbitrary (i.e. squeezed, thermal etc.) broadband bath; (2) the prediction of a periodic modification to the detuning and damping of an oscillator for the simplest sort of all-optical feedback (i.e. a mirror) as seen in the recent experiment "Forces between a Single Atom and Its Distant Mirror Image", P. Bushev et al, Phys. Rev. Lett. 92, 223602 (2004

    The Consumption of Reference Resources

    Get PDF
    Under the operational restriction of the U(1)-superselection rule, states that contain coherences between eigenstates of particle number constitute a resource. Such resources can be used to facilitate operations upon systems that otherwise cannot be performed. However, the process of doing this consumes reference resources. We show this explicitly for an example of a unitary operation that is forbidden by the U(1)-superselection rule.Comment: 4 pages 6x9 page format, 2 figure

    Entanglement under restricted operations: Analogy to mixed-state entanglement

    Get PDF
    We show that the classification of bi-partite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.Comment: 10 pages, 2 figures; published versio

    Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States

    Full text link
    As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρss\rho_{ss}, is more natural. In the preceding paper we concentrated upon whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ\chi of the bosons in the laser mode, and the excess phase noise ν\nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0\nu=\chi=0), the most robust states are coherent states. As the phase noise ν\nu or phase dispersion χ\chi is increased, the most robust states become increasingly amplitude-squeezed. We find scaling laws for these states. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR states having a well-defined coherent amplitude. This lends support to the idea that robust PR ensembles are the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as Part II of a two-part paper. The original version of quant-ph/9906125 is shortly to be replaced by a new version which is Part I of the two-part paper. This paper (Part II) also contains some material from the original version of quant-ph/990612

    Quantum phenomena modelled by interactions between many classical worlds

    Full text link
    We investigate whether quantum theory can be understood as the continuum limit of a mechanical theory, in which there is a huge, but finite, number of classical 'worlds', and quantum effects arise solely from a universal interaction between these worlds, without reference to any wave function. Here a `world' means an entire universe with well-defined properties, determined by the classical configuration of its particles and fields. In our approach each world evolves deterministically; probabilities arise due to ignorance as to which world a given observer occupies; and we argue that in the limit of infinitely many worlds the wave function can be recovered (as a secondary object) from the motion of these worlds. We introduce a simple model of such a 'many interacting worlds' approach and show that it can reproduce some generic quantum phenomena---such as Ehrenfest's theorem, wavepacket spreading, barrier tunneling and zero point energy---as a direct consequence of mutual repulsion between worlds. Finally, we perform numerical simulations using our approach. We demonstrate, first, that it can be used to calculate quantum ground states, and second, that it is capable of reproducing, at least qualitatively, the double-slit interference phenomenon.Comment: Published version (including further discussion of interpretation and quantum limit

    Continuous quantum error correction via quantum feedback control

    Get PDF
    We describe a protocol for continuously protecting unknown quantum states from decoherence that incorporates design principles from both quantum error correction and quantum feedback control. Our protocol uses continuous measurements and Hamiltonian operations, which are weaker control tools than are typically assumed for quantum error correction. We develop a cost function appropriate for unknown quantum states and use it to optimize our state-estimate feedback. Using Monte Carlo simulations, we study our protocol for the three-qubit bit-flip code in detail and demonstrate that it can improve the fidelity of quantum states beyond what is achievable using quantum error correction when the time between quantum error correction cycles is limited.Comment: 12 pages, 6 figures, REVTeX; references fixe

    State and dynamical parameter estimation for open quantum systems

    Full text link
    Following the evolution of an open quantum system requires full knowledge of its dynamics. In this paper we consider open quantum systems for which the Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]: a radiatively damped atom driven by an unknown Rabi frequency Ω\Omega (as would occur for an atom at an unknown point in a standing light wave). By measuring the environment of the system, knowledge about the system state, and about the uncertain dynamical parameter, can be acquired. We find that these two sorts of knowledge acquisition (quantified by the posterior distribution for Ω\Omega, and the conditional purity of the system, respectively) are quite distinct processes, which are not strongly correlated. Also, the quality and quantity of knowledge gain depend strongly on the type of monitoring scheme. We compare five different detection schemes (direct, adaptive, homodyne of the xx quadrature, homodyne of the yy quadrature, and heterodyne) using four different measures of the knowledge gain (Shannon information about Ω\Omega, variance in Ω\Omega, long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
    corecore