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Continuous quantum error correction via quantum feedback control
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We describe a protocol for continuously protectumgknownquantum states from decoherence that incor-
porates design principles from both quantum error correction and quantum feedback control. Our protocol uses
continuous measurements and Hamiltonian operations, which are weaker control tools than are typically
assumed for quantum error correction. We develop a cost function appropriate for unknown quantum states and
use it to optimize our state-estimate feedback. Using Monte Carlo simulations, we study our protocol for the
three-qubit bit-flip code in detail and demonstrate that it can improve the fidelity of quantum states beyond
what is achievable using quantum error correction when the time between quantum error-correction cycles is
limited.
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[. INTRODUCTION available controlling manipulations have bounded strengths
Long-lived coherent quantum states are essential fofl12].
many quantum information science applications, including The availability of quantum error correction, which can
quantum cryptographjl], quantum computatiof2,3], and  protect unknown quantum states, and quantum feedback con-
quantum teleportatiof4]. Unfortunately, coherent quantum trol, which uses weak measurements and slow controls, sug-
states have extremely short lifetimes in realistic open quangests that there might be a way to merge these approaches
tum systems due to strong decohering interactions with théto a single technique with all of these features. Previous
environment. Overcoming this decoherence is the chiefvork to account for continuous time using quantum error
hurdle faced by experimenters studying quantum-limitedcorrection has focused on “automatic” recovery and has ne-
systems. glected the role of continuous measuremer®—16. On the
Quantum error correction is a “software solution” to this Other hand, previous work on quantum state protection using
problem[5,6]. It works by redundantly encoding quantum quantum feedback control has focused on protocols for
information across many quantum systems. The key to thi§nown states and has not addressed the issue of protecting
approach is the use of measurements that reveal informatidgthknown quantum statgd7,18; however, se¢19] for re-
about which errors have occurred and not about the encodédted work.
data. This feature is particularly useful for protecting the The paper is organized as follows. In Sec. Il we review
unknown quantum states that appear frequently in the coursélantum feedback control and introduce the formalism of
of quantum computations. The physical tools used in thigtochastic master equations. In Sec. Ill we present the three-
approach are projective von Neumann measurements thétibit bit-flip code as a simple example of a quantum error-
discretize errors onto a finite set and fast unitary gates tha&orrecting code which may be generalized using the stabi-
restore corrupted data. When combined with fault-tolerantizer formalism. In Sec. IV we present our protocol for
techniques, and when all noise sources are below a criticguantum error feedback control and derive an optimal non-
value known as the accuracy threshold, quantum error coMarkovian feedback strategy for it. In Sec. V we use Monte
rection enables quantum computations of arbitrary lengttarlo simulations to demonstrate this strategy’s efficacy for
with arbitrarily small output error, or so-called fault-tolerant the bit-flip code and compare it to discrete quantum error
quantum computatiofi,8]. correction when the time between quantum error correction
Quantum feedback control is also sometimes used to confycles is finite. In Sec. VI we give our conclusions.
bat decoherend®-11]. This approach has the advantage of
working well even when control tools are limited. The infor- Il. QUANTUM FEEDBACK CONTROL
mation about the quantum state fed into the controller typi- ) ) )
cally comes from continuous measurements and the opera- COnsider an open quantum system evolving via the master
tions the controller applies in response are typicallyeduation20]
bounded-strength Hamiltonians. The performance of the :
feedback may also be optimized relative to the resources that p=—i[H,p]+D[c]p, (1)
are available. For example, one can design a quantum feed-
back control scheme which minimizes the distance betweeWhere
a quantum state and its target subject to the constraint that all

i1 1
Dlclp=cpc —5Cicp—5pcic. (2
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nal agent(such as the environmentontinuously performs a ous measurement history rather than its actual instantaneous
weak measuremef22] with Kraus operator¢for example  value. Adding this feedback to the SME) leads to the

[21] dynamics
Qg=1-[iH+ %cTc)dt, @ dp(t)=—i[H,pc(t)Jdt+D[c]pc(t)dt+H[c]pc(t)dW(1)
—i{lg)[F,pc(t)]dt, (10)
Q,=c\/dt. @ dQt)=(c+chdt+dW(t). (12)

On any particular trajectory, the dynamics obey a stochastic
master equatioiSME) [20,24), such as IIl. QUANTUM ERROR CORRECTION

Although quantum feedback control has many merits, it
has not been used to protect unknown quantum states from
noise. Quantum error correction, however, is specifically de-

dpc=—i[H,pc]dt+D[c]pdt+H[c]pdW, 5)

_ t
dQ=(c+c’)dt+dw, ®  signed to protect unknown quantum states; for this reason it
h has been an essential ingredient in the design of quantum
where computers[27-29. The salient aspects of quantum error
H[c]p=cp+ pc'— ptr[cp+ pcT]. ) correction can already be seen in the three-qubit bit-flip

code, even though it is not a fully quantum error correcting
code. For that reason, we shall introduce quantum error cor-
rection and the stablizer formalism with this example.

The bit-flip code protects a single two-state quantum sys-
tem, or qubit, from bit-flipping errors by mapping it onto the
tstate of three qubits:

The ¢ subscript above denotes conditioning on the full
record of the measurement currépft), anddW above de-
notes a diffusive Wiener incremef25] having ensemble
meanE[dW]=0 and variancé/[dW]=dt. The unraveling
of the master equation into quantum trajectories is no
unique; the diffusive unraveling above occurs, for example, i
when the agent performs weak homodyne measurements on |0)—1000=10), (12)
an optical fieldc [24].

The quantum trajectories picture is particularly useful

froma contr_ol theory pe_rspec_:tlve because we can imagine a‘Fpe state @ and |T> are called théasis statesor the code
agent who, instead of disposing of the classical measuremen

record, feeds it back into the system to control it. There aré”md the space spanned by them is called ¢hdespace

two well-studied ways of doing this: Wiseman-Milburn, or Whose elements are calleddewords

current feedback9,24], andestimatefeedback{12]. Alter the qubits are subjected to noise, quanium error cor
rection proceeds in two steps. First, the parities of neighbor-

In current feedback, the feedback depends only on the . o
ihg qubits are projectively measured. These are the

|1)—]110)=|1). (13

instantaneous measurement currég(t) =dQ(t)/dt. For observables
example, adding the Hamiltonial,(t)F to the SME (5)
using current feedback leads to the dynanhizls Mo=2ZZI (14)

dpc(t)=—i[H,pc(t)Jdt+D[clpc(t)dt+H[c]pc(t)dW(t)
—i[F,cp(t) + pe(t)cT]dt+DIF]p.(t)dt

M,=1ZZ. (15)

The error syndromeis the pair of eigenvaluesar(y;,m;) re-

—i[F,ps(t)]dW (8)  turned by this measurement.
Once the error syndrome is known, the second step is to
dQ(t)=(c+c") dt+dWt). 9 apply one of the following unitary operations conditioned on

the error syndrome:
A more general way to add feedback is to modulate the

Hamiltonian by a functional of the entire measurement (—1,+1)—XIl, (16)
record. An important class of this kind of feedback is esti-

mate feedback, in which feedback is a function of the current (=1,—-1)—IXI, (17)
conditioned state estimaje.. This kind of feedback is of

especial interest because of the quantum Bellman theorem (+1,—-1)—11X, (18
[26], which proves that the optimal feedback strategy will be

a function only of conditioned state expectation values for a (+1,+1)—IIl. (19

large class of physically reasonable cost functions. An ex-

ample of such an estimate feedback control law analogous to———

the current feedback Hamiltonian used in E8). is to add YWe use the notation di27] in which X, Y, andZ denote the
the Hamiltonian(l o(t)).F=(c+ c"F, which depends on Ppauli matricess, , oy, ando,, respectively, and their concatena-
what weexpectthe currentl o(t) should be given the previ- tion denotes a tensor produetg.,ZZl= o, 5,®1).
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This procedure has two particularly appealing character- V. CONTINUOUS QUANTUM ERROR CORRECTION
istics: the error syndrome measurement does not distinguish VIA QUANTUM FEEDBACK CONTROL
between the codewords, and the projective nature of the mea-

surement discretizes all possible quantum errors onto a finit{e cltri]nthgnsjﬁtliggme F:Jrssti r::] 2&?32?”fogvgc;it'r?]léggilyemgr} ¢
set. These properties hold for general stabilizer codes as weﬁ g an unt q o gV - '
State estimation, and Hamiltonian correction. As in the pre-

[27]. . : . : ; o
If the bit-flipping errors arise from reservoir-induced de- gggg‘g section, we introduce this method via the bit-flip

coherence, then prior to quantum error correction the qubit
evolve via the master equation
A. Bit-flip code: Theoretical model
dpnoise= V(DX ]+ DX ]+ D[IIX])pdt,  (20) Supposep is subjected to bit-flipping decoherence as in
Eq. (20); to protect against such decoherence, we have seen
where ydt is the probability of a bit-flip error on each qubit that we can encodg using the bit-flip cod¢(12) and (13)].
per time intervalt,t+dt]. This master equation has the so- Here we shall define a similar protocol that operates continu-

lution ously and uses only weak measurements and slow correc-
tions.
p(t)=a(t) po+b(t) (X1 peXI1+I1XIpol X1+ 11X pol 1X) The first part of our protocol is to weakly measure the
stabilizer generator&Z| and1ZZ for the bit-flip code, even
+ (1) (XXIpeX X1+ XIXpoXIX+1XXpol1X) though these measurements will not completely collapse the

errors. To localize the errors even further, we also measure

FA(D)XXXpoXXX, @1 the remaining nontrivial stabilizer operatttZ.2 The second
part of our protocol is to apply the slow Hamiltonian correc-
where tionsXIl, IXI, andlIX corresponding to the unitary correc-
tions X11, IXI, andlIX, with control parameters, that are
a(t)=(1+3e"?"+3e " +e ®")/8, (22)  to be determined. If we parametrize the measurement
strength byx and perform the measurements using the un-
b(t)=(1+e 2"—g 4M—g 678, (23  raveling(5)—(6), the SME describing our protocol is
dp.=y(D[XI]+D[IXI]+D[11X])pcdt
c(t)=(1—e 2"—e M+ 57)/g, (24)
+k(D[ZZI]+D[12Z]+ D[ Z1Z])p.dt
d(t)=(1-3e 2"+3e *'—e *M)/8. (25) +K(H[ZZ11dW, + H[1ZZ]d W, + H[ ZI1Z]dW5) pe
The functionsa(t)—d(t) express the probability that the —i[F,pc]dt, (28)
system is left in a state that can be reached by zero, one, two,
or three bit flips from the initial state, respectively. After dQ;=2k(ZZI).dt+ kdW;, (29
guantum error correction is performed, single errors are iden-
tified correctly but double and triple errors are not. As adQ,=2«(12Z)dt+ \/;dWZ, (30)
result, the recovered state, averaged over all possible mea-
surement syndromes, is dQy=2(Z1Z) dt+ JrdWs, (31)

p=[a(t) +b()Ipo+[c(t) +d()IXXXpoXXX. (26 here

The overlap of this state with the initial state depends on the F=N X+ NI X+ N 511X (32
initial state, but is at least as large as when the initial state is
|0); namely, it is at least as large as is the feedback Hamiltonian having control paramebers

Following the logic of quantum error correction, it is
Fencz(2+3e‘27t—e‘GV‘)/421—3(yt)2. (27 natural to choose thg, to be functions of the error syn-
drome. For example, the choice

Recalling that a single qubit subject to this decoherence has
error probability p=+yt, we see that, when applied suffi-
ciently often, the bit-flip code reduces the error probability
on each qubit fronO(p) to O(p?).

This methodology for mapping— p? generalizes for a
full stabilizer code in which stabilizer generatd!,} are 2The modest improvement gained by this extra measurement in
measured to infer an error syndrome which is subsequentlyeneral is offset by an unfavorable scaling in the number of extra
used to apply a unitary correction. For more details regardingneasurements required when applied to gengnalk,d]] codes
this formalism, see Ref27]. having 2~ ¥ stabilizer elements and only—k generators.

)\l:%(l—<ZZ|>C)(1+<|ZZ>C)(1_<Z|Z>C)’
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z=1

N5 (1~ (ZZD)(1-(122))(1+(Z12)0), (39

AS:%(H<zzwc)<1—<IZZ>C><1—<ZIZ>C>’

where\ is the maximum feedback strength that can be ap-
plied, is reasonabl@it acts trivially when the state is in the
codespace and applies a maximal correction when the state is y=-1|
orthogonal to the codespace. Unfortunately this feedback is
sometimes harmful when it need not be. For example, when
the controller receives no measurement ingués, «=0), it
still adds an extra coherent evolution which, on average, will
drive the state of the system away from the state we wish to
protect.

This weakness of the feedback strategy suggests that we :
should choose our feedback more carefully. To do this, we z=-1
introduce a cost function describing how far away our state is FIG. 1. Bloch sphere showing the action of our feedback
from its tar_g(_at anq choose a contrql which minimizes thisscheme on one qubit. Wherever the Bloch vector is inytzeplane,
cost. The difficulty is that our target is amknownquantum e feedhack forces it back to the spin-up state, which is the

state. However, we can choose the target to be the codespagggespace of this system. All the vectors shown lie, without loss of
which we do know. We choose our cost function, thereforegenerality, in thex=0 plane.

to be the norm of the component of the state outside the

codespace. Since the codespace projectodljs= (Il statep:(0) will be unknown. Fortunately the calculation of
+ZZ1+2Z1Z+12Z), the cost function is * f, wheref(p) the feedbacK35) does not depend on where the initial con-
=tr(pll;). Under the SME28), the time evolution of due  dition is within the codespace, so the controller may assume

to the feedback HamiltoniaR is the maximally mixed initial condition p=73(|0)(0|
df +|1)(1|) for its calculations. This property generalizes for a
fb_ wide class of stabilizer codes, as we prove in the Appendix,
=2N Y ZI+YIZ)+ 2N (ZY I+1Y Z
dt i Je A Je and we conjecture that this property holds for all stabilizer
+2Na(ZIYHIZY),. (34 codes
Maximizing d f,/dt minimizes the cost, yielding the optimal B. Intuitive one-qubit picture
feedback coefficients Before generalizing our procedure, it is helpful to gain
some intuition about how it works by considering an even
N=Nsgn(YZI+YIZ), simpler “code”: the spin-up staté.e., |0)) of a single qubit.
The stabilizer isMy=Z2, the noise it protects against is bit
Np=NsgnZYI+1Y2Z)., (35  flips X, and the correction Hamiltonian is proportionalXo
The optimal feedback, by a similar analysis to that for the
N3=AsgnZIY+I1ZY),, bit-flip code, isF=X\ sgnY). X, and the resulting stochastic

o . master equation can be rewritten as a set of Bloch sphere
where, again) is the maximum feedback strength that canequations as follows:

be applied.

This feedback scheme is lsang-bangcontrol scheme, d(X)e=— 2k(X)dt—2Vk(X)(Z) AW, (36)
meaning that the control parametexg are always at the
maximum or minimum value possiblex (or —\, respec- d(Y)e=—29(Y)edt—2x(Y) = 2\/k(Y)(Z) AW
tively), which is a typical control solution both classically
[30] and quantum mechanical[B1]. In practice, the bang- =2\ (sgn(Y)c)(Z).dt, 37

bang optimal controls(35) can be approximated by a

_ _ 2
bandwidth-limited sigmoid, such as a hyperbolic tangent KZ)c= 27’<Z>Cdt+2‘/;(1 (Z)o)dwW

function. +2N(sgn(Y)o)(Y)dt. 38
The control solution(35) requires the controller to inte- (sgnY)e)(¥)e 8
grate the SME(28) using the measurement currers(t) The Bloch vector representatiofX),(Y),(Z)) [3] of the

and the initial conditionp.. However, typically the initial qubit provides a simple geometric picture of how it evolves.
Decoherencéthe y term) shrinks the Bloch vector, measure-
ment (the x termg lengthens the Bloch vector and moves it
3The factor of3 is included to limit the maximal strength of any closer to thez axis, and correctiorithe N term) rotates the
parameteir, to \. Bloch vector in they-z plane. Figure 1 depicts this evolution:
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depending on whether the Bloch vector is in the hemispherguantum memory, the SME9) will not couple the dynam-
with (Y)>0 or(Y)<0, the feedback will rotate the vector as ics of them logical qubits; and, as in the bit-flip case, the
quickly as possible in such a way that it is always movinginitial condition for the controller’s integration can still be
towards the codespacspin-up state Note that if the Bloch the completely mixed state in the total codespace. Then the
vector lies exactly on the-axis with (Z)<O0, rotating it ei- relevant scaling for this system, the dependencemris

ther way will move it towards the spin-up state—the two linear: the number of parametersrig2" )2,

directions are equivalent, and it suffices to choose one of

them arbitrarily.
y V. SIMULATION OF THE BIT-FLIP CODE

C. Feedback for a general code In this section we present the results of Monte Carlo
simulations of the implementation of the protocol described

h li f f k t
Our approach generalizes for a fdifin,k,d]] quantum in Sec. IV for the bit-flip code.

error-correcting cod¢29], which can protect against depo-
larizing noise[3] acting on each qubit independently. This
noise channel, unlike the bit-flip channel, generates a full A. Simulation details
range of quantum errors—it applies eithér Y, or Z to each
qubit equiprobably at a ratg. We weakly measure the
—k stabilizer generatofdM |} with strengthx. For each syn-
dromem, we apply a Hamiltonian correctidp,, with control
strength\ ,,. The SME describing this process is

Because the bit-flip code feedback control sch¢(@8)—
(31)] uses a nonlinear feedback Hamiltonian, numerical
simulation is the most tractable route for its study. To obtain
pc(t), we directly integrated these equations using a simple
Euler integrator and a Gaussian random number generator.

n _ n—k We found stable convergent solutions when we used a di-
dpe=7 > 2 (D[UJ(')])PcdHKE D[M,]p.dt mensionless time stepdt on th_e order of 10° and aver- _
j=xy,zi=1 =1 aged over 1Hquantum trajectories. As a benchmark, a typi-

n—k R cal run using these parameters took 2—8 h on a 400 MHz
+k > HIM 1AW p—i > N\ J[F,,pc]dt. (39)  Sun Ultra 2. We found that more sophisticated Milste]
<1 A= T integrators converged more quickly but required too steep a

. reduction in time step to achieve the same level of stability.
The number of feedback termisneeded will be less than  p of our simulations began in the stape(0)=|0)(0| be-

or equal to the number of errors the co_de _corrects against,se it is maximally damaged by bit-flipping noise and
The reason that this equality is not strict is that quantumpearefore it yielded the most conservative results.

error correcting codes can blegeneratemeaning that there We used two measures to assess the behavior of our bit-
can exist inequivalent errors that have the same effect on thg, ¢qde feedback control scheme. The first measure we used
state—a purely quantum-mechanical prop¢ay]. is the codeword fidelity F,(t) =tr(pc(0)pc(t)), the overlap

We optimize th_e\r relative to a cost function equal to th? of the state with the target codeword. This measure is appro-
state’s overlap with the codespace. For a general Stab'l'z‘ﬂriate when one cannot perform strong measurements and

codeC, the codespace projector is fast unitary operations, a realistic scenario for many physical
n—k systems. We compardti.,,(t) to the fidelities of one unpro-
I,= H (1+M)) tect(_ed qubitFl(t)=%3(1+e*2“/‘) and of three unprotected
2n—ki=i qubits F5(t) = (F,(t))".

The second measure we used is terectable overlap
and the rate of change of the codespace overlap due to feed-
back is Feorr(D) =tr(p ()11, (41)

dffy n_k

. where
ar ! > N[Te,Fp.
r=0

I1 =po+ X1 pgXIT + X1 pol XTI + 11X pgl I X 42
Maximizing this overlap subject to a maximum feedback corr=Po po po po 42

strength\ vyields the feedback coefficients ) ,
is the projector onto the states that can be corrected back to

A=\ sgn[II.,F,])e. (40) the original codeword by discrete quantum error correction
applied (once at timet. This measure is appropriate when

This control solution, as for the bit-flip code, requires aone can perform strong measurements and fast unitary op-
controller to compute the feedba¢k0). A natural question erations, but only at discrete time intervals of lengtiwe
to ask is how the scaling of the classical computation beeompared-,,,(t) to the fidelityF.,4{t) obtained when, in-
haves. In the Appendix we show that the evolution ofstead of using our protocol up to tinieno correction was
(2"%)2 parameters must be calculated in order to computg@erformed until the final discrete quantum error correction at
the feedback for afi[n,k,d]] code, which at first does not timet. As we showed in Eq.27), the expression foF.,{t)
seem promising. However, if one encoaek qubits usingn ~ may be calculated analytically; it B.,{t)=3(2+3e 2"
copies of arff[n,k,d]] code, as might well be the case for a —e ) ~1—3%t2.
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T - - - both schemes have codeword fidelitieg,(t) that follow the
0.99M "\ _ three-qubit fidelityF5(t) closely. For both schemeB,,(t)
\\ improves and surpasses the fidelity of a single unprotected
098\ 1 qubit F,(t). Indeed, perhaps the most exciting feature of
097 \ = these figures is that eventualy,(t) surpasse&.,{t), the
0.06! ‘-\_ \\ | fidelity achievable by discrete quantum error correction ap-
z B N B plied at timet. In other words, our scheme alone outperforms
0951 1 N 1 discrete quantum error correction alone if the time between
“ 004 \ % | corrections is sufficiently long.
i \ Looking at our second measure in Figs. 2 and 3, we see
0.93 \ 1 that F .o (t) is as good as or surpasses,t) almost ev-
0.92| \ N \ erywhere. For times even as short as a tenth of a decoherence
\_ N time, the effect of using our protocol between discrete quan-
o9 i N o] tum error correction cycles is quite noticeable. This improve-
0.9; 2 008 o . ors 03 '625 ment suggests that, even when one can _approximate disc_rete
’ " Time(14) ’ ’ quantum error correction but only apply it every so often, it

pays to use our protocol in between corrections. Therefore,
FIG. 2. Behavior of our protocol with optimized feedba@)  our protocol offers a means of improving the fidelity of a
for parameters</ y=64, \/y=128, averaged over i(quantum  quantum memory even after the system has been isolated as

trajectories. The analytical curves shown are as follows: the dashege|| as possible and a discrete quantum error correction is
line is the fidelity of one decohering qubk, (t); the dashed-dotted applied as frequently as possible.

line is the fidelity of three decohering qubifs,(t); and the dotted There is a small time range frot&=0.01 tot=0.05 for

line is the fiQeIity of an encoded ngit after one round of discretey, o parameters used in Fig. 2 in which using our protocol
error correctionFendt). Our simulation results are as follows: the hotqre the discrete quantum error correction actually under-
fr?e“igpriéf;glz f)?/‘i?l";grd f'((:;}“tFCW(t)’ and the thick solid line is 0 t5ms not doing anything before the correction. Our simu-
corrii/ lations suggest that the reason for this narrow window of
deficiency is that, in the absence of our protocol, it is pos-
sible to have two errors on a qulii.g., two bit flipg that
We find that both our optimized estimate feedbackcancel each other out before discrete quantum error correc-
scheme (35) and our heuristically motivated feedback tion is performed. In contrast, our protocol will immediately
schemd(33) effectively protect a qubit from bit-flip decoher- start to correct for the first error before the second one hap-
ence. In Figs. 2 and 3 we show how these schemes behapens, so we lose the advantage of this sort of cancellation.
for the (scaled measurement and feedback strengily ~ This view is supported by the fact th&t,,(t) in our simu-
=64, N/ y=128 when averaged over 4Quantum trajecto- lations always lies above the fidelity line obtained by sub-
ries. Using our first measure, we see that at very short timegtacting such fortuitous cancellations frof,(t). In any
case, this window can be made arbitrarily small and pushed

B. Results

1 . . ; . arbitrarily close to the beginning of our protocol by increas-
0.99 \\ | ing the measurement strengthand the feedback strengih
' \ In Figs. 2 and 3, th&,,(t) line is much more jagged than
0.98F\ 1 theF.o.(t) line. The jaggedness in both of these lines is due
0.7 \\ to statistical noise in our simulation and is reduced when we
\ average over more than “4@ajectories. The reason for the
, 0961 N 1 reduced noise in thE () line has to do with the proper-
§0_95- \\ § ties of discrete quantum error correction—on average, neigh-
ic ! ' " boring states get corrected back to the same state by discrete
0.84r N 1 quantum error correction, so noise fluctuations become
093f ] smoothed out.
o ‘\ 8 | Th_e improvement our op_timized estimate feedback proto-
' ! N col yields beyond our heuristically motivated feedback pro-
0911 \_ ' R tocol is more noticeable iR, (t) than inF.,,,(t) as seenin
- L N , , Figs. 2 and 3. Our optimized protocol acts to minimize the
0 0.05 0'1Time(1/y)0'15 0.2 0.25 distance between the current state and the codespace, not

between the current state and the space of states correctable

FIG. 3. Behavior of our protocol with nonoptimized feedback Pack to the original codeword, so this observation is perhaps
(33) for parametersc/ y=64, N/ y=128, averaged over tquan-  Not surprising. In fact, optimizing feedback relative to
tum trajectories. As in Fig. 2, the dashed lineFig(t), the dashed- Fcor(t) is Not even possible without knowing the codeword
dotted line isF4(t), the dotted line isF.,Jt), the solid line is  being protected. Nevertheless, our optimized protocol does
F.u(t), and the thick solid line i§,(t). Note that this feedback is perform better, so henceforth we shall restrict our to discus-
qualitatively similar to that in Fig. 2 but does not perform as well. sion to it.
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0.98

0.24-~ osed

corr

094

Crossing time (1/y)

120 120 A

w/y Ny

x/y

FIG. 6. F,,, at yt=0.2 as a function of measurement strength
«/y and feedback strengtk/y. This quantity corresponds to the
fidelity of a state given continuous error correction up/te=0.2, at
which point discrete error correction is performed.

FIG. 4. Timer at whichF,(7)=F(7) as a function of mea-
surement strengttx/y and feedback strength/+y. This crossing
time is the time after which our optimized protocol improves the
fidelity of a qubit beyond what it would have been if it were left to
itself. tion of measurement strengidiy. In other words, there is an

optimal choice of measurement strengthy. This optimal

We investigated how our protocol behaved when thechoice arises because syndrome measurements, which local-
scaled measurement strengthy and feedback strengtty y  ize states near error subspaces, compete with Hamiltonian
were varied using the two measures described in Sec. V Acorrection operations, which coherently rotate states between
Our first measure, the codeword fidelfg,(t), crosses the the nontrivial error subspaces to the trivial error subspace.
unprotected qubit fidelity=,(t) at various timesr as de- This phenomenon is a feature of our continuous-time proto-
picted in Fig. 4. This time is of interest because it is the timecol that is not present in discrete quantum error correction; in
after which our optimized protocol improves the fidelity of a the former, measurement and correction are simultaneous,
gubit beyond what it would have been if it were left to itself. while in the latter, measurement and correction are separate
Increasing the scaled feedback strenythy improves our  noninterfering processes.
scheme and reduces but the dependence on the scaled In order to study how our second measure, the correctable
measurement streng# y is not so obvious from Fig. 4. overlapF ., (t), varies withx and\, we found it instructive

By looking at cross sections of Fig. 4, such as\&y  to examine its behavior at a particular time. In Fig. 6 we plot
=80 as in Fig. 5, we see that for a given scaled feedback cor(t), evaluated at the time=0.2/y, as a function of«k
strength\/y there is a minimum crossing timeas a func- andA. As we found with the crossing time, increasing\

always improves performance, but increasingoes not be-

0.16 cause measurement can compete with correction. Since
Fend0.2/y)=0.927, for all thex and \ plotted in Fig. 6,

. using our protocol between discrete quantum error correction
. intervals of time 0.2y improves the reliability of the en-
coded data.

- Finally, we note that when no feedback was performed

; (A=0), the continuous measurement of the syndrome by
itself did not offer any suppression of errors via some kind of
. ) guantum Zeno effedt34]. This is because the decoherence
* the measurements are competing with are also first order in
time by their Markovian nature. However, for Hamiltonian
errors, which affect the state to second order in time at the
earliest, we indeed found additional suppression of errors
e arising solely from the continuous syndrome measurement.

Crossing time(1/y)
154
=

*,

o

-

N
L

0.1 4‘0 8‘0 1é0 VI. CONCLUSION

Ky . . .
In many realistic quantum computing architectures, weak
FIG. 5. Timer at whichF,(7)=F,(7) as a function of mea- measurements and Hamiltonian operations are likely to be
surement strengthx/y, keeping correction strength fixed aty  the tools available to protect quantum states from decoher-
=80. ence. Moreover, even quantum systems in which strong mea-
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surements and fast operations are well approximated, such asere|a| denotes the weight o, namely the number of
ion traps[33], it is likely that these operations will only be nonidentity terms in its representation as a tensor product of
possible at some maximum rate. Our protocol is able to conPauli operators.
tinuously protect unknown quantum states using only weak It is also useful to define the normalizZs(S) for the code
measurements and Hamiltonian corrections and can improvas the group of operators which commute with every element
the fidelity of quantum states beyond rate-limited quantumin S(C). The elements oN(S)\S can be thought of as the
error correction. In addition, because our protocol respondencoded operationfor the code—they move one codeword
to the entire measurement record and not to instantaneots another.
measurement results, it will not propagate errors badly and We shall rewrite the conditions we require for the compu-
therefore has a limited inherent fault tolerance that ordinarytation of the feedback to be insensitive to the initial code-
guantum error correction does not. word in terms of thePauli basis coefficients fp) which we
We expect that our protocol will be applicable to other define as follows. Leg=0;,® -0, whereiq, ...,
continuous-time quantum information processes, such as reske on the values,y,z,| ando,=1. Then
liable state preparation and fault-tolerant quantum computa-
tion. We also expect that our approach will work when dif- Ry(p)=tr(pg)/2"=(g)/2". (A2)
ferent continuous-time measurement tools are available, such
as direct photodetection. Finally, although current computingiVe can then formulate the problem in terms of proving con-
technology has limited our simulation investigation to few- ditions onG as follows:
qubit versions of our protocol, we are confident that many of (1) For everyR, used in our feedback schengs G.
the salient features we found in our three-qubit bit-flip code (2) For everyge G and everyp, and p, in C, Ry(p1)
protocol will persist when our protocol is applied to larger =Ry(p2).
codes. (3) Evolution under the SME couples members of the set
{Rylge G} only to each other.
Theorem Let C be an[[n,1,3]]* stabilizer code whose
ACKNOWLEDGMENTS stabilizerS(C) has generators of only even weight and whose

; ; ; - encoded operations s&t(S)\S has elements of only odd
co|\|/:§gtaegp"i¥1§ﬁ|é?r?gv Iggﬂﬁaﬁelﬁgjtl)iglsiﬁ?%gi(mtsh E%Z%Neight?’ Then the conditions 1-3 above are satisfied; conse-
Mabuchi, éerard Milburn, John Pres'kill, Benjamin,Rahn,ql_‘?me' oursche_me _does not require knowledge of where the
and Howard Wiseman. We are particularly grateful toInltlal codeword lies inC.

Howard Wiseman for suggesting the optimization leading to

in

Proof: In this proof, any variable of the forma, is an

the improved feedback schent@s) and for discussions that a'Pitrary element oP,, and any variable of the forms, is
led us to perform the calculations discussed in the Appendi@" arbitrary element o§(C). We prove each of the condi-
This work was supported in part by the National Science'OnS listed above separately. _

Foundation under Grant No. EIA-0086038 and by the De- Condmon(k% By COHSUU((:E)OH,G contains allM of the
partment of Energy under Grant No. DE-FG03-92-ER40701form M =s;o}™, wherel[s;, 0] # 0. These are precisely the
A. L. acknowledges financial support from IBM and C. A, OPerators used to compute the feedback in @@) for a

acknowledges financial support from the NSF. code encoding one qubit. _
Condition 2 Letg=ase G and letp e C. We know either

aeS, aeN(S)\S, or a¢N(S). SupposeaeS. Theng
APPENDIX A: FEEDBACK BASED ON THE COMPLETELY €S acts trivially on all states in the codespace, Bg
MIXED STATE =1/2"tr(pg) = 1/2" for this case. Now supposee N(S)\S.
Then[a,s]=0, and sincease G, |al is even. But every
Even though our quantum error correction feedback conglement ofN(S)\S has odd weight by hypothesis, which is a

trol scheme described in Sec. IV does not distinguish becontradiction. Hencer cannot be inN(S)\S. Finally, sup-
tween codewords, it is not obvious that we do not need tgyose o & N(S). Then there exists soms’ e S such that

know the initial codeword to integrate its SME and calculate] 4, s'10; lets’ be such an element. Then fop),| $) eC,
the relevant expectation values. Since we are interested In
protecting unknown quantum states, this property is cruciab———
to our scheme’s success. Fortunately, for a large class oferne restriction tof[n,1,3]] codes is for simplicity of analysis;
stabilizer codes, the computation of the feedback can bge proof may be extended to larger codes. Note that for an
done by assuming the initial state is the completely mixedn 13]] code, theF, in the master equatiof89) are all of the
codespace statp=(1/2")II'_X(1+M,), which we prove form o, where this notation denotes the weight-one Pauli opera-
here. tor o acting on qubitk.
We begin by defining the s& for the[[n,k,d]] codeC St is possible that this restriction may be able to be relaxed:
with stabilizerS(C) as however, it is sufficiently general that it holds for the most well-
known codes, including the bit-flip code, the five-bit code, the Ste-
) . ane code, and the nine-bit Shor code. This condition also ensures
G={aslaeP,,seS(0),[s,a]=0 iff |a| iseven, that G is consistenti.e., if a;sye G and a;=a,Sy, thena, and
(A1) s, also fulfill the conditions fora,(s,sy) to be inG.
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(Ulald)=(slas'|g)=—(yls a|$)=—(y|a|$)=0.
(A3)

Hence for this cas®y=1/2"tr(pas) =0. Note that these
expressions foRy must be the same no matter wherés in
the codespace; therefore, for eveye G and pq,p,
eC, Ry(p1)=Ry(p2).

Condition 3 We prove this by considerindR,,, where
M e G: we will show thatdRy,=f({Ry|NeG}) for some
real functionf. Now, for any M eP,,, dRy=Tr(dp M),
wheredp is given by the master equati¢B89), and we can

PHYSICAL REVIEW &5 042301

We can now divide the analysis of this term into two
cases. Case 1 occurs whefl) e, has weight e[, implying
that {q ,UJ(k)}ZO. Then {a'](k) ,a]-(k)a|sm}=
—oMay[o9 s]=0, which implies that [sy,ap]
=[sm,0{ @+ of s, ]= 0[5, ]. So[s,]=0
just when[s,,,a,]=0, which means thal e G since|ay)|
=|a].

In Case 2,0{%« has weight|a;=1|=[e,0¥]=0.
Then Eq.(A4) becomes{o{¥ oM ais}= 0 {0l s}
=0, which implies that [sy,an]={sn.0{"}a

show condition 3 for each term of the master equation sepay ;(N(s  o}=0{{s,,a}. So [Sy,2,]=0 just when
rately. First, substituting in the master equation shows tha{smja,}=0 whicjh means thaN e G since |ap|=|a+1|.

any term of the formD[c]pdt contributes either O or the

simple exponential damping term2R, to dR,, if M andc
commute or anticommute, respectively.

As for the master equation terfi[s; |dW,p, by writing
the master equation in the Pauli basis we can seeRRat
contributes todRy through this term precisely wheNs;
=M and{s;,N}#0. Here we know thaM € G, so we may
write M = s, (with the appropriate restriction dnyy,s]
depending on the weight af,). N= aysiS;= Sy, S0 the
condition above that[s;,N]=0 becomes [s;,ass;]
=(alsj,si5i]+[s), alsis)=[sj,a]=0. Therefore,
[k, Sml=si[ ax,Sj]+[ax,s/]s;=[ ay,s]s; which is zero or
not depending on the original weight af,. So if M = a,s
is such thatM e G, N= ays,, must fulfill that same condi-
tion, implying thatN € G also.

Similarly, Ry contributes todR,, through the master
equation tern{ () ,p] whenNo{¥=M and[o{¥ ,N]#0.

Now, M € G soM = ¢,S,,, again with the appropriate restric-

tion on[«,Sy] depending on the weight of,. Then N
=M asy=a,sy, so the condition above thgir() N}
#0 becomes

{089,005t = o ¥ 9 T oM 5,
=¥ a}ysy— o[ ,5,]=0.

(A4)

|

Thus we have shown the three conditions that allRfe
used to compute the feedback are of the fé&tgyL ¢ ; that for
a givenM e G, Ry will be the same for any state in the
codespace; and that evolution via the master equation mixes
the R’s of the form Ry only with each other. Therefore,
we can conclude that taking the initial state toawgy state in
the codespace, including the true initial state and the entirely
mixed state, produces the same expression for the feedback
when the master equation is evolved conditioned on a mea-
surement record, and so we do not have to know the true
initial state to use our protocol.

Another consequence of using the completely mixed state
for feedback arises from the fact that doing so corresponds to
discarding information about the state of the system. There-
fore, this procedure should reduce the number of parameters
needed to compute the feedback. Unfortunately, this only
leads to a modest reduction in the number of parameters,
which can be found by using a simple counting argument.
There are 2/2¢=2""K different error subspaces, including
the no-errorcode space, and if we start with the completely
mixed state in the codespace we do not need to worry at all
about any movement within any of these spaces. We must
only worry about which error space we are actually in, along
with coherences between these spaces, so we find that
(2"%)2 parameters are needed to describe the system.
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