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Continuous quantum error correction via quantum feedback control
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We describe a protocol for continuously protectingunknownquantum states from decoherence that incor-
porates design principles from both quantum error correction and quantum feedback control. Our protocol uses
continuous measurements and Hamiltonian operations, which are weaker control tools than are typically
assumed for quantum error correction. We develop a cost function appropriate for unknown quantum states and
use it to optimize our state-estimate feedback. Using Monte Carlo simulations, we study our protocol for the
three-qubit bit-flip code in detail and demonstrate that it can improve the fidelity of quantum states beyond
what is achievable using quantum error correction when the time between quantum error-correction cycles is
limited.
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I. INTRODUCTION

Long-lived coherent quantum states are essential
many quantum information science applications, includ
quantum cryptography@1#, quantum computation@2,3#, and
quantum teleportation@4#. Unfortunately, coherent quantum
states have extremely short lifetimes in realistic open qu
tum systems due to strong decohering interactions with
environment. Overcoming this decoherence is the ch
hurdle faced by experimenters studying quantum-limi
systems.

Quantum error correction is a ‘‘software solution’’ to th
problem @5,6#. It works by redundantly encoding quantu
information across many quantum systems. The key to
approach is the use of measurements that reveal informa
about which errors have occurred and not about the enco
data. This feature is particularly useful for protecting t
unknown quantum states that appear frequently in the co
of quantum computations. The physical tools used in t
approach are projective von Neumann measurements
discretize errors onto a finite set and fast unitary gates
restore corrupted data. When combined with fault-toler
techniques, and when all noise sources are below a cri
value known as the accuracy threshold, quantum error
rection enables quantum computations of arbitrary len
with arbitrarily small output error, or so-called fault-tolera
quantum computation@7,8#.

Quantum feedback control is also sometimes used to c
bat decoherence@9–11#. This approach has the advantage
working well even when control tools are limited. The info
mation about the quantum state fed into the controller ty
cally comes from continuous measurements and the op
tions the controller applies in response are typica
bounded-strength Hamiltonians. The performance of
feedback may also be optimized relative to the resources
are available. For example, one can design a quantum f
back control scheme which minimizes the distance betw
a quantum state and its target subject to the constraint tha
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available controlling manipulations have bounded streng
@12#.

The availability of quantum error correction, which ca
protect unknown quantum states, and quantum feedback
trol, which uses weak measurements and slow controls,
gests that there might be a way to merge these approa
into a single technique with all of these features. Previo
work to account for continuous time using quantum er
correction has focused on ‘‘automatic’’ recovery and has
glected the role of continuous measurement@13–16#. On the
other hand, previous work on quantum state protection us
quantum feedback control has focused on protocols
known states and has not addressed the issue of prote
unknown quantum states@17,18#; however, see@19# for re-
lated work.

The paper is organized as follows. In Sec. II we revie
quantum feedback control and introduce the formalism
stochastic master equations. In Sec. III we present the th
qubit bit-flip code as a simple example of a quantum err
correcting code which may be generalized using the st
lizer formalism. In Sec. IV we present our protocol fo
quantum error feedback control and derive an optimal n
Markovian feedback strategy for it. In Sec. V we use Mon
Carlo simulations to demonstrate this strategy’s efficacy
the bit-flip code and compare it to discrete quantum er
correction when the time between quantum error correc
cycles is finite. In Sec. VI we give our conclusions.

II. QUANTUM FEEDBACK CONTROL

Consider an open quantum system evolving via the ma
equation@20#

ṙ52 i @H,r#1D@c#r, ~1!

where

D@c#r5crc†2
1

2
c†cr2

1

2
rc†c. ~2!

These dynamics may be thought of as the ensemble a
age over manyquantum trajectories@23# in which an exter-
©2002 The American Physical Society01-1
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nal agent~such as the environment! continuously performs a
weak measurement@22# with Kraus operators~for example!
@21#

V0512S iH 1
1

2
c†cDdt, ~3!

V15cAdt. ~4!

On any particular trajectory, the dynamics obey a stocha
master equation~SME! @20,24#, such as

drc52 i @H,rc#dt1D@c#rcdt1H@c#rcdW, ~5!

dQ5^c1c†&cdt1dW, ~6!

where

H@c#r5cr1rc†2r tr @cr1rc†#. ~7!

The c subscript above denotes conditioning on the f
record of the measurement currentQ(t), anddW above de-
notes a diffusive Wiener increment@25# having ensemble
meanE@dW#50 and varianceV@dW#5dt. The unraveling
of the master equation into quantum trajectories is
unique; the diffusive unraveling above occurs, for examp
when the agent performs weak homodyne measuremen
an optical fieldc @24#.

The quantum trajectories picture is particularly use
from a control theory perspective because we can imagin
agent who, instead of disposing of the classical measurem
record, feeds it back into the system to control it. There
two well-studied ways of doing this: Wiseman-Milburn, o
current feedback@9,24#, andestimatefeedback@12#.

In current feedback, the feedback depends only on
instantaneous measurement currentI Q(t)5dQ(t)/dt. For
example, adding the HamiltonianI Q(t)F to the SME ~5!
using current feedback leads to the dynamics@9#

drc~ t !52 i @H,rc~ t !#dt1D@c#rc~ t !dt1H@c#rc~ t !dW~ t !

2 i @F,crc~ t !1rc~ t !c†#dt1D@F#rc~ t !dt

2 i @F,rc~ t !#dW ~8!

dQ~ t !5^c1c†&cdt1dW~ t !. ~9!

A more general way to add feedback is to modulate
Hamiltonian by a functional of the entire measureme
record. An important class of this kind of feedback is es
mate feedback, in which feedback is a function of the curr
conditioned state estimaterc . This kind of feedback is of
especial interest because of the quantum Bellman theo
@26#, which proves that the optimal feedback strategy will
a function only of conditioned state expectation values fo
large class of physically reasonable cost functions. An
ample of such an estimate feedback control law analogou
the current feedback Hamiltonian used in Eq.~8! is to add
the Hamiltonian^I Q(t)&cF5^c1c†&cF, which depends on
what weexpectthe currentI Q(t) should be given the previ
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ous measurement history rather than its actual instantan
value. Adding this feedback to the SME~5! leads to the
dynamics

drc~ t !52 i @H,rc~ t !#dt1D@c#rc~ t !dt1H@c#rc~ t !dW~ t !

2 i ^I Q&c@F,rc~ t !#dt, ~10!

dQ~ t !5^c1c†&cdt1dW~ t !. ~11!

III. QUANTUM ERROR CORRECTION

Although quantum feedback control has many merits
has not been used to protect unknown quantum states
noise. Quantum error correction, however, is specifically
signed to protect unknown quantum states; for this reaso
has been an essential ingredient in the design of quan
computers@27–29#. The salient aspects of quantum err
correction can already be seen in the three-qubit bit-
code, even though it is not a fully quantum error correcti
code. For that reason, we shall introduce quantum error
rection and the stablizer formalism with this example.

The bit-flip code protects a single two-state quantum s
tem, or qubit, from bit-flipping errors by mapping it onto th
state of three qubits:

u0&→u000&[u0̄&, ~12!

u1&→u111&[u1̄&. ~13!

The statesu0̄& and u1̄& are called thebasis statesfor the code
and the space spanned by them is called thecodespace,
whose elements are calledcodewords.

After the qubits are subjected to noise, quantum error c
rection proceeds in two steps. First, the parities of neighb
ing qubits are projectively measured. These are
observables1

M05ZZI, ~14!

M15IZZ. ~15!

The error syndromeis the pair of eigenvalues (m0 ,m1) re-
turned by this measurement.

Once the error syndrome is known, the second step i
apply one of the following unitary operations conditioned
the error syndrome:

~21,11!→XII , ~16!

~21,21!→IXI , ~17!

~11,21!→IIX , ~18!

~11,11!→III . ~19!

1We use the notation of@27# in which X, Y, and Z denote the
Pauli matricessx , sy, andsz , respectively, and their concatena
tion denotes a tensor product~e.g.,ZZI5sz^ sz^ I !.
1-2
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CONTINUOUS QUANTUM ERROR CORRECTION VIA . . . PHYSICAL REVIEW A65 042301
This procedure has two particularly appealing charac
istics: the error syndrome measurement does not disting
between the codewords, and the projective nature of the m
surement discretizes all possible quantum errors onto a fi
set. These properties hold for general stabilizer codes as
@27#.

If the bit-flipping errors arise from reservoir-induced d
coherence, then prior to quantum error correction the qu
evolve via the master equation

drnoise5g~D@XII #1D@ IXI #1D@ IIX # !r dt, ~20!

wheregdt is the probability of a bit-flip error on each qub
per time interval@ t,t1dt#. This master equation has the s
lution

r~ t !5a~ t !r01b~ t !~XIIr0XII 1IXIr0IXI 1IIXr0IIX !

1c~ t !~XXIr0XXI1XIXr0XIX1IXXr0IIX !

1d~ t !XXXr0XXX, ~21!

where

a~ t !5~113e22gt13e24gt1e26gt!/8, ~22!

b~ t !5~11e22gt2e24gt2e26gt!/8, ~23!

c~ t !5~12e22gt2e24gt1e26gt!/8, ~24!

d~ t !5~123e22gt13e24gt2e26gt!/8. ~25!

The functionsa(t) –d(t) express the probability that th
system is left in a state that can be reached by zero, one,
or three bit flips from the initial state, respectively. Aft
quantum error correction is performed, single errors are id
tified correctly but double and triple errors are not. As
result, the recovered state, averaged over all possible m
surement syndromes, is

r5@a~ t !1b~ t !#r01@c~ t !1d~ t !#XXXr0XXX. ~26!

The overlap of this state with the initial state depends on
initial state, but is at least as large as when the initial stat
u0̄&; namely, it is at least as large as

Fenc5~213e22gt2e26gt!/4.123~gt !2. ~27!

Recalling that a single qubit subject to this decoherence
error probability p5gt, we see that, when applied suffi
ciently often, the bit-flip code reduces the error probabil
on each qubit fromO(p) to O(p2).

This methodology for mappingp→p2 generalizes for a
full stabilizer code in which stabilizer generators$Ml% are
measured to infer an error syndrome which is subseque
used to apply a unitary correction. For more details regard
this formalism, see Ref.@27#.
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IV. CONTINUOUS QUANTUM ERROR CORRECTION
VIA QUANTUM FEEDBACK CONTROL

In this section we present a method for continuously p
tecting an unknown quantum state using weak measurem
state estimation, and Hamiltonian correction. As in the p
ceding section, we introduce this method via the bit-fl
code.

A. Bit-flip code: Theoretical model

Supposer is subjected to bit-flipping decoherence as
Eq. ~20!; to protect against such decoherence, we have s
that we can encoder using the bit-flip code@~12! and~13!#.
Here we shall define a similar protocol that operates conti
ously and uses only weak measurements and slow cor
tions.

The first part of our protocol is to weakly measure t
stabilizer generatorsZZI and IZZ for the bit-flip code, even
though these measurements will not completely collapse
errors. To localize the errors even further, we also meas
the remaining nontrivial stabilizer operatorZIZ.2 The second
part of our protocol is to apply the slow Hamiltonian corre
tionsXII , IXI , andIIX corresponding to the unitary correc
tionsXII , IXI , andIIX , with control parameterslk that are
to be determined. If we parametrize the measurem
strength byk and perform the measurements using the
raveling ~5!–~6!, the SME describing our protocol is

drc5g~D@XII #1D@ IXI #1D@ IIX # !rcdt

1k~D@ZZI#1D@ IZZ#1D@ZIZ# !rcdt

1Ak~H@ZZI#dW11H@ IZZ#dW21H@ZIZ#dW3!rc

2 i @F,rc#dt, ~28!

dQ152k^ZZI&cdt1AkdW1 , ~29!

dQ252k^IZZ&cdt1AkdW2 , ~30!

dQ352k^ZIZ&cdt1AkdW3 , ~31!

where

F5l1XII 1l2IXI 1l3IIX ~32!

is the feedback Hamiltonian having control parameterslk .
Following the logic of quantum error correction, it i

natural to choose thelk to be functions of the error syn
drome. For example, the choice

l15
l

8
~12^ZZI&c!~11^IZZ&c!~12^ZIZ&c!,

2The modest improvement gained by this extra measuremen
general is offset by an unfavorable scaling in the number of e
measurements required when applied to general@@n,k,d## codes
having 2n2k stabilizer elements and onlyn2k generators.
1-3
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l25
l

8
~12^ZZI&c!~12^IZZ&c!~11^ZIZ&c!, ~33!

l35
l

8
~11^ZZI&c!~12^IZZ&c!~12^ZIZ&c!,

wherel is the maximum feedback strength that can be
plied, is reasonable:3 it acts trivially when the state is in th
codespace and applies a maximal correction when the sta
orthogonal to the codespace. Unfortunately this feedbac
sometimes harmful when it need not be. For example, w
the controller receives no measurement inputs~i.e., k50), it
still adds an extra coherent evolution which, on average,
drive the state of the system away from the state we wis
protect.

This weakness of the feedback strategy suggests tha
should choose our feedback more carefully. To do this,
introduce a cost function describing how far away our stat
from its target and choose a control which minimizes t
cost. The difficulty is that our target is anunknownquantum
state. However, we can choose the target to be the codes
which we do know. We choose our cost function, therefo
to be the norm of the component of the state outside
codespace. Since the codespace projector isPC5

1
4 (III

1ZZI1ZIZ1IZZ), the cost function is 12 f , where f (r)
5tr(rPC). Under the SME~28!, the time evolution off due
to the feedback HamiltonianF is

d f f b

dt
52l1^YZI1YIZ&c12l2^ZYI1IYZ&c

12l3^ZIY1IZY&c . ~34!

Maximizing d f f b/dt minimizes the cost, yielding the optima
feedback coefficients

l15l sgn̂ YZI1YIZ&c ,

l25l sgn̂ ZYI1IYZ&c , ~35!

l35l sgn̂ ZIY1IZY&c ,

where, again,l is the maximum feedback strength that c
be applied.

This feedback scheme is abang-bangcontrol scheme,
meaning that the control parameterslk are always at the
maximum or minimum value possible (l or 2l, respec-
tively!, which is a typical control solution both classical
@30# and quantum mechanically@31#. In practice, the bang
bang optimal controls~35! can be approximated by
bandwidth-limited sigmoid, such as a hyperbolic tang
function.

The control solution~35! requires the controller to inte
grate the SME~28! using the measurement currentsQi(t)
and the initial conditionrc . However, typically the initial

3The factor of1
8 is included to limit the maximal strength of an

parameterlk to l.
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staterc(0) will be unknown. Fortunately the calculation o
the feedback~35! does not depend on where the initial co
dition is within the codespace, so the controller may assu
the maximally mixed initial condition re5 1

2 (u0̄&^0̄u
1u1̄&^1̄u) for its calculations. This property generalizes for
wide class of stabilizer codes, as we prove in the Appen
and we conjecture that this property holds for all stabiliz
codes.

B. Intuitive one-qubit picture

Before generalizing our procedure, it is helpful to ga
some intuition about how it works by considering an ev
simpler ‘‘code’’: the spin-up state~i.e., u0&) of a single qubit.
The stabilizer isM05Z, the noise it protects against is b
flips X, and the correction Hamiltonian is proportional toX.
The optimal feedback, by a similar analysis to that for t
bit-flip code, isF5l sgn̂ Y&c X, and the resulting stochasti
master equation can be rewritten as a set of Bloch sph
equations as follows:

d^X&c522k^X&cdt22Ak^X&c^Z&cdW, ~36!

d^Y&c522g^Y&cdt22k^Y&c22Ak^Y&c^Z&cdW

22l~sgn̂ Y&c!^Z&cdt, ~37!

d^Z&c522g^Z&cdt12Ak~12^Z&c
2!dW

12l~sgn̂ Y&c!^Y&cdt. ~38!

The Bloch vector representation (^X&,^Y&,^Z&) @3# of the
qubit provides a simple geometric picture of how it evolve
Decoherence~theg term! shrinks the Bloch vector, measure
ment ~the k terms! lengthens the Bloch vector and moves
closer to thez axis, and correction~the l term! rotates the
Bloch vector in they-z plane. Figure 1 depicts this evolution

FIG. 1. Bloch sphere showing the action of our feedba
scheme on one qubit. Wherever the Bloch vector is in they-z plane,
the feedback forces it back to the spin-up state, which is
codespace of this system. All the vectors shown lie, without loss
generality, in thex50 plane.
1-4
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depending on whether the Bloch vector is in the hemisph
with ^Y&.0 or ^Y&,0, the feedback will rotate the vector a
quickly as possible in such a way that it is always movi
towards the codespace~spin-up state!. Note that if the Bloch
vector lies exactly on thez-axis with ^Z&,0, rotating it ei-
ther way will move it towards the spin-up state—the tw
directions are equivalent, and it suffices to choose one
them arbitrarily.

C. Feedback for a general code

Our approach generalizes for a full@@n,k,d## quantum
error-correcting code@29#, which can protect against depo
larizing noise@3# acting on each qubit independently. Th
noise channel, unlike the bit-flip channel, generates a
range of quantum errors—it applies eitherX, Y, or Z to each
qubit equiprobably at a rateg. We weakly measure then
2k stabilizer generators$Ml% with strengthk. For each syn-
dromem, we apply a Hamiltonian correctionFm with control
strengthlm . The SME describing this process is

drc5g (
j 5x,y,z

(
i 51

n

~D@s j
( i )# !rcdt1k(

l 51

n2k

D@Ml #rcdt

1Ak(
l 51

n2k

H@Ml #dWjrc2 i (
r 51

R

l r@Fr ,rc#dt. ~39!

The number of feedback termsR needed will be less than
or equal to the number of errors the code corrects aga
The reason that this equality is not strict is that quant
error correcting codes can bedegenerate, meaning that there
can exist inequivalent errors that have the same effect on
state—a purely quantum-mechanical property@27#.

We optimize thel r relative to a cost function equal to th
state’s overlap with the codespace. For a general stabi
codeC, the codespace projector is

PC5
1

2n2k )
l 51

n2k

~ I 1Ml !

and the rate of change of the codespace overlap due to f
back is

d f f b

dt
52 i tr(

r 50

n2k

l r@PC ,Fr #r.

Maximizing this overlap subject to a maximum feedba
strengthl yields the feedback coefficients

l r5l sgn̂ @PC ,Fr #&c . ~40!

This control solution, as for the bit-flip code, requires
controller to compute the feedback~40!. A natural question
to ask is how the scaling of the classical computation
haves. In the Appendix we show that the evolution
(2n2k)2 parameters must be calculated in order to comp
the feedback for an@@n,k,d## code, which at first does no
seem promising. However, if one encodesmk qubits usingm
copies of an@@n,k,d## code, as might well be the case for
04230
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quantum memory, the SME~39! will not couple the dynam-
ics of them logical qubits; and, as in the bit-flip case, th
initial condition for the controller’s integration can still b
the completely mixed state in the total codespace. Then
relevant scaling for this system, the dependence onm, is
linear: the number of parameters ism(2n2k)2.

V. SIMULATION OF THE BIT-FLIP CODE

In this section we present the results of Monte Ca
simulations of the implementation of the protocol describ
in Sec. IV for the bit-flip code.

A. Simulation details

Because the bit-flip code feedback control scheme@~28!–
~31!# uses a nonlinear feedback Hamiltonian, numeri
simulation is the most tractable route for its study. To obt
rc(t), we directly integrated these equations using a sim
Euler integrator and a Gaussian random number gener
We found stable convergent solutions when we used a
mensionless time stepgdt on the order of 1026 and aver-
aged over 104 quantum trajectories. As a benchmark, a ty
cal run using these parameters took 2–8 h on a 400 M
Sun Ultra 2. We found that more sophisticated Milstein@32#
integrators converged more quickly but required too stee
reduction in time step to achieve the same level of stabil
All of our simulations began in the staterc(0)5u0̄&^0̄u be-
cause it is maximally damaged by bit-flipping noise a
therefore it yielded the most conservative results.

We used two measures to assess the behavior of our
flip code feedback control scheme. The first measure we u
is thecodeword fidelity Fcw(t)5tr„rc(0)rc(t)…, the overlap
of the state with the target codeword. This measure is ap
priate when one cannot perform strong measurements
fast unitary operations, a realistic scenario for many phys
systems. We comparedFcw(t) to the fidelities of one unpro-
tected qubitF1(t)5 1

2 (11e22gt) and of three unprotected
qubitsF3(t)5„F1(t)…3.

The second measure we used is thecorrectable overlap

Fcorr~ t !5tr„rc~ t !Pcorr…, ~41!

where

Pcorr5r01XIIr0XII 1IXIr0IXI 1IIXr0IIX ~42!

is the projector onto the states that can be corrected bac
the original codeword by discrete quantum error correct
applied ~once! at time t. This measure is appropriate whe
one can perform strong measurements and fast unitary
erations, but only at discrete time intervals of lengtht. We
comparedFcorr(t) to the fidelityFenc(t) obtained when, in-
stead of using our protocol up to timet, no correction was
performed until the final discrete quantum error correction
time t. As we showed in Eq.~27!, the expression forFenc(t)
may be calculated analytically; it isFenc(t)5 1

4 (213e22gt

2e26gt);123g2t2.
1-5
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B. Results

We find that both our optimized estimate feedba
scheme ~35! and our heuristically motivated feedbac
scheme~33! effectively protect a qubit from bit-flip decoher
ence. In Figs. 2 and 3 we show how these schemes be
for the ~scaled! measurement and feedback strengthsk/g
564, l/g5128 when averaged over 104 quantum trajecto-
ries. Using our first measure, we see that at very short tim

FIG. 2. Behavior of our protocol with optimized feedback~35!
for parametersk/g564, l/g5128, averaged over 104 quantum
trajectories. The analytical curves shown are as follows: the das
line is the fidelity of one decohering qubit,F1(t); the dashed-dotted
line is the fidelity of three decohering qubits,F3(t); and the dotted
line is the fidelity of an encoded qubit after one round of discr
error correction,Fenc(t). Our simulation results are as follows: th
solid line is the codeword fidelityFcw(t), and the thick solid line is
the correctable overlapFcorr(t).

FIG. 3. Behavior of our protocol with nonoptimized feedba
~33! for parametersk/g564, l/g5128, averaged over 104 quan-
tum trajectories. As in Fig. 2, the dashed line isF1(t), the dashed-
dotted line isF3(t), the dotted line isFenc(t), the solid line is
Fcw(t), and the thick solid line isFcw(t). Note that this feedback is
qualitatively similar to that in Fig. 2 but does not perform as we
04230
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both schemes have codeword fidelitiesFcw(t) that follow the
three-qubit fidelityF3(t) closely. For both schemes,Fcw(t)
improves and surpasses the fidelity of a single unprotec
qubit F1(t). Indeed, perhaps the most exciting feature
these figures is that eventuallyFcw(t) surpassesFenc(t), the
fidelity achievable by discrete quantum error correction
plied at timet. In other words, our scheme alone outperform
discrete quantum error correction alone if the time betwe
corrections is sufficiently long.

Looking at our second measure in Figs. 2 and 3, we
that Fcorr(t) is as good as or surpassesFenc(t) almost ev-
erywhere. For times even as short as a tenth of a decoher
time, the effect of using our protocol between discrete qu
tum error correction cycles is quite noticeable. This improv
ment suggests that, even when one can approximate dis
quantum error correction but only apply it every so often
pays to use our protocol in between corrections. Theref
our protocol offers a means of improving the fidelity of
quantum memory even after the system has been isolate
well as possible and a discrete quantum error correctio
applied as frequently as possible.

There is a small time range fromt>0.01 to t>0.05 for
the parameters used in Fig. 2 in which using our proto
before the discrete quantum error correction actually und
performs not doing anything before the correction. Our sim
lations suggest that the reason for this narrow window
deficiency is that, in the absence of our protocol, it is p
sible to have two errors on a qubit~e.g., two bit flips! that
cancel each other out before discrete quantum error cor
tion is performed. In contrast, our protocol will immediate
start to correct for the first error before the second one h
pens, so we lose the advantage of this sort of cancellat
This view is supported by the fact thatFcorr(t) in our simu-
lations always lies above the fidelity line obtained by su
tracting such fortuitous cancellations fromFenc(t). In any
case, this window can be made arbitrarily small and pus
arbitrarily close to the beginning of our protocol by increa
ing the measurement strengthk and the feedback strengthl.

In Figs. 2 and 3, theFcw(t) line is much more jagged tha
theFcorr(t) line. The jaggedness in both of these lines is d
to statistical noise in our simulation and is reduced when
average over more than 104 trajectories. The reason for th
reduced noise in theFcorr(t) line has to do with the proper
ties of discrete quantum error correction—on average, ne
boring states get corrected back to the same state by dis
quantum error correction, so noise fluctuations beco
smoothed out.

The improvement our optimized estimate feedback pro
col yields beyond our heuristically motivated feedback p
tocol is more noticeable inFcw(t) than inFcorr(t) as seen in
Figs. 2 and 3. Our optimized protocol acts to minimize t
distance between the current state and the codespace
between the current state and the space of states correc
back to the original codeword, so this observation is perh
not surprising. In fact, optimizing feedback relative
Fcorr(t) is not even possible without knowing the codewo
being protected. Nevertheless, our optimized protocol d
perform better, so henceforth we shall restrict our to disc
sion to it.

ed

e

.

1-6



th

m
a
lf.

ed

ac

ocal-
nian
een
ce.
to-
; in
ous,
rate

ble

lot

ince

tion

ed
by
of

ce
r in
n
the
ors
nt.

ak
be

her-
ea-

he
to

th
e

CONTINUOUS QUANTUM ERROR CORRECTION VIA . . . PHYSICAL REVIEW A65 042301
We investigated how our protocol behaved when
scaled measurement strengthk/g and feedback strengthl/g
were varied using the two measures described in Sec. V
Our first measure, the codeword fidelityFcw(t), crosses the
unprotected qubit fidelityF1(t) at various timest as de-
picted in Fig. 4. This time is of interest because it is the ti
after which our optimized protocol improves the fidelity of
qubit beyond what it would have been if it were left to itse
Increasing the scaled feedback strengthl/g improves our
scheme and reducest, but the dependence on the scal
measurement strengthk/g is not so obvious from Fig. 4.

By looking at cross sections of Fig. 4, such as atl/g
580 as in Fig. 5, we see that for a given scaled feedb
strengthl/g there is a minimum crossing timet as a func-

FIG. 4. Timet at whichFcw(t)5F1(t) as a function of mea-
surement strengthk/g and feedback strengthl/g. This crossing
time is the time after which our optimized protocol improves t
fidelity of a qubit beyond what it would have been if it were left
itself.

FIG. 5. Timet at whichFcw(t)5F1(t) as a function of mea-
surement strengthk/g, keeping correction strength fixed atl/g
580.
04230
e
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tion of measurement strengthk/g. In other words, there is an
optimal choice of measurement strengthk/g. This optimal
choice arises because syndrome measurements, which l
ize states near error subspaces, compete with Hamilto
correction operations, which coherently rotate states betw
the nontrivial error subspaces to the trivial error subspa
This phenomenon is a feature of our continuous-time pro
col that is not present in discrete quantum error correction
the former, measurement and correction are simultane
while in the latter, measurement and correction are sepa
noninterfering processes.

In order to study how our second measure, the correcta
overlapFcorr(t), varies withk andl, we found it instructive
to examine its behavior at a particular time. In Fig. 6 we p
Fcorr(t), evaluated at the timet50.2/g, as a function ofk
and l. As we found with the crossing timet, increasingl
always improves performance, but increasingk does not be-
cause measurement can compete with correction. S
Fenc(0.2/g)>0.927, for all thek and l plotted in Fig. 6,
using our protocol between discrete quantum error correc
intervals of time 0.2/g improves the reliability of the en-
coded data.

Finally, we note that when no feedback was perform
(l50), the continuous measurement of the syndrome
itself did not offer any suppression of errors via some kind
quantum Zeno effect@34#. This is because the decoheren
the measurements are competing with are also first orde
time by their Markovian nature. However, for Hamiltonia
errors, which affect the state to second order in time at
earliest, we indeed found additional suppression of err
arising solely from the continuous syndrome measureme

VI. CONCLUSION

In many realistic quantum computing architectures, we
measurements and Hamiltonian operations are likely to
the tools available to protect quantum states from deco
ence. Moreover, even quantum systems in which strong m

FIG. 6. Fcorr at gt50.2 as a function of measurement streng
k/g and feedback strengthl/g. This quantity corresponds to th
fidelity of a state given continuous error correction up togt50.2, at
which point discrete error correction is performed.
1-7
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AHN, DOHERTY, AND LANDAHL PHYSICAL REVIEW A 65 042301
surements and fast operations are well approximated, suc
ion traps@33#, it is likely that these operations will only b
possible at some maximum rate. Our protocol is able to c
tinuously protect unknown quantum states using only w
measurements and Hamiltonian corrections and can imp
the fidelity of quantum states beyond rate-limited quant
error correction. In addition, because our protocol respo
to the entire measurement record and not to instantan
measurement results, it will not propagate errors badly
therefore has a limited inherent fault tolerance that ordin
quantum error correction does not.

We expect that our protocol will be applicable to oth
continuous-time quantum information processes, such as
liable state preparation and fault-tolerant quantum comp
tion. We also expect that our approach will work when d
ferent continuous-time measurement tools are available, s
as direct photodetection. Finally, although current comput
technology has limited our simulation investigation to fe
qubit versions of our protocol, we are confident that many
the salient features we found in our three-qubit bit-flip co
protocol will persist when our protocol is applied to larg
codes.
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APPENDIX A: FEEDBACK BASED ON THE COMPLETELY
MIXED STATE

Even though our quantum error correction feedback c
trol scheme described in Sec. IV does not distinguish
tween codewords, it is not obvious that we do not need
know the initial codeword to integrate its SME and calcula
the relevant expectation values. Since we are intereste
protecting unknown quantum states, this property is cru
to our scheme’s success. Fortunately, for a large clas
stabilizer codes, the computation of the feedback can
done by assuming the initial state is the completely mix
codespace statere5(1/2n)) l 51

n2k(I 1Ml), which we prove
here.

We begin by defining the setG for the @@n,k,d## codeC
with stabilizerS(C) as

G5$asuaPPn ,sPS~C!,@s,a#50 iff uau is even%,
~A1!
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where uau denotes the weight ofa, namely the number of
nonidentity terms in its representation as a tensor produc
Pauli operators.

It is also useful to define the normalizerN(S) for the code
as the group of operators which commute with every elem
in S(C). The elements ofN(S)\S can be thought of as the
encoded operationsfor the code—they move one codewo
to another.

We shall rewrite the conditions we require for the comp
tation of the feedback to be insensitive to the initial cod
word in terms of thePauli basis coefficients Rg(r) which we
define as follows. Letg5s i 1

^ •••^ s i n
, where i 1 , . . . ,i n

take on the valuesx,y,z,I ands I5I . Then

Rg~r![tr~rg!/2n5^g&/2n. ~A2!

We can then formulate the problem in terms of proving co
ditions onG as follows:

~1! For everyRg used in our feedback scheme,gPG.
~2! For everygPG and everyr1 and r2 in C, Rg(r1)

5Rg(r2).
~3! Evolution under the SME couples members of the

$RgugPG% only to each other.
Theorem. Let C be an @@n,1,3##4 stabilizer code whose

stabilizerS(C) has generators of only even weight and who
encoded operations setN(S)\S has elements of only odd
weight.5 Then the conditions 1–3 above are satisfied; con
quently, our scheme does not require knowledge of where
initial codeword lies inC.

Proof: In this proof, any variable of the formaa is an
arbitrary element ofPn , and any variable of the formsa is
an arbitrary element ofS(C). We prove each of the condi
tions listed above separately.

Condition 1. By construction,G contains allM of the
form M5sis j

(k) , where@si ,s j
(k)#Þ0. These are precisely th

operators used to compute the feedback in Eq.~40! for a
code encoding one qubit.

Condition 2. Let g5asPG and letrPC. We know either
aPS, aPN(S)\S, or a¹N(S). SupposeaPS. Then g
PS acts trivially on all states in the codespace, soRg
51/2n tr(rg)51/2n for this case. Now supposeaPN(S)\S.
Then @a,s#50, and sinceasPG, uau is even. But every
element ofN(S)\S has odd weight by hypothesis, which is
contradiction. Hencea cannot be inN(S)\S. Finally, sup-
pose a¹N(S). Then there exists somes8PS such that
@a,s8#Þ0; let s8 be such an element. Then foruc&,uf&PC,

4The restriction to@@n,1,3## codes is for simplicity of analysis
the proof may be extended to larger codes. Note that for
@@n,1,3## code, theFl in the master equation~39! are all of the
form s j

(k) , where this notation denotes the weight-one Pauli ope
tor s j acting on qubitk.

5It is possible that this restriction may be able to be relax
however, it is sufficiently general that it holds for the most we
known codes, including the bit-flip code, the five-bit code, the S
ane code, and the nine-bit Shor code. This condition also ens
that G is consistent, i.e., if a j skPG and a j5ansm , then an and
smsk also fulfill the conditions foran(smsk) to be inG.
1-8
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CONTINUOUS QUANTUM ERROR CORRECTION VIA . . . PHYSICAL REVIEW A65 042301
^cuauf&5^cuas8uf&52^cus8auf&52^cuauf&50.
~A3!

Hence for this caseRg51/2n tr(ras)50. Note that these
expressions forRg must be the same no matter wherer is in
the codespace; therefore, for everygPG and r1 ,r2
PC, Rg(r1)5Rg(r2).

Condition 3. We prove this by consideringdRM , where
MPG: we will show thatdRM5 f ($RNuNPG%) for some
real function f. Now, for any MPPn , dRM5Tr(dr M ),
wheredr is given by the master equation~39!, and we can
show condition 3 for each term of the master equation se
rately. First, substituting in the master equation shows
any term of the formD@c#rdt contributes either 0 or the
simple exponential damping term22RM to dRM if M andc
commute or anticommute, respectively.

As for the master equation termH@sj #dWjr, by writing
the master equation in the Pauli basis we can see thaRN
contributes todRM through this term precisely whenNsj
5M and$sj ,N%Þ0. Here we know thatMPG, so we may
write M5aksl ~with the appropriate restriction on@ak ,sl #
depending on the weight ofak). N5akslsj5aksm , so the
condition above that @sj ,N#50 becomes @sj ,akslsj #
5(ak@sj ,slsj #1@sj ,ak#slsj )⇒@sj ,ak#50. Therefore,
@ak ,sm#5sl@ak ,sj #1@ak ,sl #sj5@ak ,sl #sj which is zero or
not depending on the original weight ofak . So if M5aksl
is such thatMPG, N5aksm must fulfill that same condi-
tion, implying thatNPG also.

Similarly, RN contributes todRM through the maste
equation term@s j

(k) ,r# when Ns j
(k)5M and @s j

(k) ,N#Þ0.
Now, MPG soM5a lsm , again with the appropriate restric
tion on @a l ,sm# depending on the weight ofa l . Then N
5s j

(k)a lsm[ansm , so the condition above that$s j
(k) ,N%

Þ0 becomes

$s j
(k) ,s j

(k)a lsm%5s j
(k)@s j

(k) ,a l #sm1s j
(k)a l$s j

(k) ,sm%

5s j
(k)$s j

(k) ,a l%sm2s j
(k)a l@s j

(k) ,sm#50.

~A4!
Pr

-

n
,

-

04230
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We can now divide the analysis of this term into tw
cases. Case 1 occurs whens j

(k)a l has weightua l u, implying
that $a l ,s j

(k)%50. Then $s j
(k) ,s j

(k)a lsm%5

2s j
(k)a l@s j

(k) ,sm#50, which implies that @sm ,an#
5@sm ,s j

(k)#a l1s j
(k)@sm ,a l #5s j

(k)@sm ,a l #. So @sm ,an#50
just when@sm ,a l #50, which means thatNPG since uanu
5ua l u.

In Case 2,s j
(k)a l has weight ua l61u⇒@a l ,s j

(k)#50.
Then Eq.~A4! becomes$s j

(k) ,s j
(k)a lsm%5s j

(k)a l$s j
(k) ,sm%

50, which implies that @sm ,an#5$sm ,s j
(k)%a l

1s j
(k)$sm ,a l%5s j

(k)$sm ,a l%. So @sm ,an#50 just when
$sm ,a l%50, which means thatNPG since uanu5ua l61u.

j

Thus we have shown the three conditions that all theR’s
used to compute the feedback are of the formRNPG ; that for
a given MPG, RM will be the same for any state in th
codespace; and that evolution via the master equation m
the R’s of the form RNPG only with each other. Therefore
we can conclude that taking the initial state to beanystate in
the codespace, including the true initial state and the enti
mixed state, produces the same expression for the feed
when the master equation is evolved conditioned on a m
surement record, and so we do not have to know the
initial state to use our protocol.

Another consequence of using the completely mixed s
for feedback arises from the fact that doing so correspond
discarding information about the state of the system. The
fore, this procedure should reduce the number of parame
needed to compute the feedback. Unfortunately, this o
leads to a modest reduction in the number of paramet
which can be found by using a simple counting argume
There are 2n/2k52n2k different error subspaces, includin
the no-error~code! space, and if we start with the complete
mixed state in the codespace we do not need to worry a
about any movement within any of these spaces. We m
only worry about which error space we are actually in, alo
with coherences between these spaces, so we find
(2n2k)2 parameters are needed to describe the system.
ea-
s

. A
@1# C. H. Bennett and G. Brassard, inProceedings of IEEE Inter-
national Conference on Computers, Systems and Signal
cessing~IEEE Press, Bangalore, India, 1984!, pp. 175–179;
IBM Tech. Discl. Bull.28, 3153~1985!.

@2# M. A. Nielsen and I. L. Chuang,Quantum Computation and
Quantum Information~Cambridge University Press, Cam
bridge, 2000!.

@3# J. Preskill, http://www.theory.caltech.edu/;preskill/ph219/
@4# C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett.69, 2881

~1992!.
@5# P. W. Shor, Phys. Rev. A52, 2493~1995!.
@6# A. Steane, Phys. Rev. Lett.77, 793 ~1996!.
@7# P. W. Shor, inProceedings, 37th Annual Symposium on Fou

dations of Computer Science~IEEE Press, Los Alamitos, CA
1996!, pp. 56–65.

@8# A. Y. Kitaev, in Proceedings of the Third International Con
o-

-

ference on Quantum Communication, Computing and M
surement, edited by O. Hirota, A. S. Holevo, and D. M. Cave
~Plenum Press, New York, 1996!.

@9# H. M. Wiseman, Phys. Rev. A49, 2133 ~1994!; 49, 5159~E!

~1994!; 50, 4428~1994!.
@10# P. Goetsch, P. Tombesi, and D. Vitali, Phys. Rev. A54, 4519

~1996!.
@11# P. Tombesi and D. Vitali, Phys. Rev. A51, 4913~1995!.
@12# A. C. Doherty and K. Jacobs, Phys. Rev. A60, 2700~1999!.
@13# A. Barenco, T. A. Brun, R. Schack, and T. Spiller, Phys. Rev

56, 1177~1997!.
@14# I. L. Chuang and Y. Yamamoto, Phys. Rev. A56, 114 ~1997!.
@15# J. P. Paz and W. Zurek, Proc. R. Soc. London, Ser. A454, 355

~1998!.
@16# J. P. Barnes and W. S. Warren, Phys. Rev. Lett.85, 856~2000!.
@17# J. Wang and H. M. Wiseman, Phys. Rev. A64, 053815~2001!.
1-9



p

o
9

r-

AHN, DOHERTY, AND LANDAHL PHYSICAL REVIEW A 65 042301
@18# A. N. Korotkov, Phys. Rev. B63, 115403~2001!.
@19# H. Mabuchi and P. Zoller, Phys. Rev. Lett.76, 3108~1996!.
@20# H. J. Carmichael,An Open Systems Approach to Quantum O

tics ~Springer-Verlag, Berlin, 1993!.
@21# K. Kraus, States, Effects, and Operations: Fundamental N

tions of Quantum Theory, Lecture Notes in Physics, Vol. 1
~Springer-Verlag, Berlin, 1983!.

@22# S. Lloyd and J.-J. E. Slotine, Phys. Rev. A62, 012307~2000!.
@23# H. M. Wiseman, Quantum Semiclassic. Opt.8, 205 ~1996!.
@24# H. M. Wiseman and G. J. Milburn, Phys. Rev. A47, 642

~1993!.
@25# C. W. Gardiner,Handbook of Stochastic Methods~Springer,

Berlin, 1985!.
@26# A. C. Dohertyet al., Phys. Rev. A62, 012105~2000!.
@27# D. Gottesman, Ph.D. thesis, Caltech, 1997~e-print
04230
-

-
0

quant-ph/9705052!.
@28# E. Knill and R. Laflamme, Phys. Rev. A55, 900 ~1997!.
@29# J. Preskill, inIntroduction to Quantum Computation and Info

mation, edited by H. K. Lo, S. Popescu, and T. Spiller~World
Scientific, River Edge, NJ, 1998!, Chap. 8, p. 213.

@30# O. L. R. Jacobs,Introduction to Control Theory~Oxford, New
York, 1993!.

@31# L. Viola and S. Lloyd, Phys. Rev. A58, 2733~1998!.
@32# P. L. Kloeden, E. Platen, and H. Schurz,Numerical Solution of

SDE Through Computer Experiments~Springer-Verlag, Berlin,
1994!.

@33# D. J. Winelandet al., J. Res. Natl. Inst. Stand. Technol.103,
259 ~1998!.

@34# A. Peres,Quantum Theory: Concepts and Methods~Kluwer,
Dordrecht, 1995!.
1-10


