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We show that the classification of bipartite pure entangled states when local quantum operations are re-
stricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically,
we develop this analogy by restricting operations through local superselection rules, and show that such exotic
phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in
resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we
demonstrate that several types of quantum optical states that possess confusing entanglement properties are
analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted opera-
tions can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian
superselection rules all questions concerning distillability can be resolved.
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I. INTRODUCTION

Entanglement of quantum systems is a potentially power-
ful resource for quantum information processing �1�. How-
ever, in the presence of noise, it is currently not known pre-
cisely which entangled states are useful, and a vast theory of
mixed-state entanglement has developed to classify states ac-
cording to their entanglement properties �2�.

In this paper, we show that the theory of pure-state en-
tanglement when quantum operations are restricted—
described formally by a superselection rule �SSR�—precisely
replicates the structure of mixed-state entanglement, includ-
ing such exotic properties as bound entanglement and acti-
vation. This analogy is useful both for the theory of mixed-
state entanglement, and for that of pure-state entanglement
under restricted operations. After over a decade of debate on
issues such as the nonlocality of a single photon �3–9� and
the role of a phase reference in quantum teleportation
�10–18�, we resolve these conceptual issues by demonstrat-
ing that entanglement under restricted operations can be
viewed as bound by the restriction. In addition, we demon-
strate that the surprising results for entanglement under con-
straints �19–23� arise from the coexistence of two distinct
operational notions of entanglement, and that distinguishing
these notions realizes the entire structure of the preexisting
mixed-state entanglement theory. Thus, we demonstrate that
the specialized concepts of the field of mixed-state entangle-
ment �such as activation and multicopy distillation� can be
applied to a wide variety of practical situations. Moreover,
unsolved questions for mixed-state entanglement have analo-
gous questions in the context of pure-state entanglement un-
der restrictions, and these can be answered in some cases. It
is hoped that this formal analog of the complex and surpris-
ing structure of mixed-state entanglement in another
situation—one that is conceptually straightforward to under-
stand and interpret—will ultimately lead to new results in
mixed-state entanglement theory.

II. CLASSIFYING MIXED-STATE ENTANGLEMENT

In this section, we present some known results for the
classification of mixed-state entanglement, with our own bias
and some new terminology. For an extensive review of
mixed-state entanglement, see Ref. �2�.

Central to the theory of entanglement is the classification
of the states of a quantum system shared between two parties
�Alice and Bob� who can perform only local quantum opera-
tions and classical communication �LOCC�. This limitation
on their operations means, on the one hand, that certain
states cannot be prepared by the two parties starting from
some uncorrelated fiducial state, and on the other hand that
certain states shared by the two parties may serve as re-
sources allowing them to perform tasks not possible with
LOCC alone. In this paper, it will be important to distinguish
between various sets of states characterized by either �i� the
operations required to prepare them or �ii� the resource they
provide for quantum information processing tasks. To em-
phasize the distinctions between these sets, we adopt a
slightly unconventional terminology for mixed-state en-
tanglement. First, we identify the class of bipartite states that
are locally preparable, that is, preparable by LOCC �starting
with some uncorrelated fiducial state�. We denote this class
LP. Second, we identify the class of states that are distillable
�24�, denoted D. States are distillable if n copies can be
converted into nr pure maximally entangled states via LOCC
for some r�0 in the limit n→�.

A pure state is either locally preparable or distillable �ei-
ther in LP or in D�, depending on whether it is a product state
or not �i.e., a state of the form ���A � ���B or not�. For mixed
states, the set LP is the set of states that possess a convex
decomposition into product states �the separable states�.
Identifying the class of mixed states that are distillable is
important for quantum information processing, but unfortu-
nately it is not known how to determine if a general bipartite
mixed state is distillable or not �2�. One property of the class
D is certain, though: in contrast to the situation for pure
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states, there are mixed states that are neither locally prepa-
rable nor distillable, called bound entangled states �25�.

Part of the difficulty in identifying the set of distillable
mixed states arises from the asymptotic nature of the defini-
tion of distillability, as it is not known how to characterize all
possible distillation protocols that act on a potentially infinite
number of copies. In the following, we will make use of a
related class with a simpler characterization: the class of
states that are 1-distillable �26,27�, denoted 1-D. We define
and motivate this class as follows. First, we note that distill-
ability is decidable on a 2�2-dimensional space, wherein all
separable states are in LP, and all nonseparable states are
distillable �28�. On an arbitrary bi-partite space, we define a
state � to be 1-distillable if there exists an operation imple-
mentable with LOCC, represented by a completely positive
map E �1�, that maps � onto a 2�2-dimensional subspace of
the bipartite system such that E��� is nonseparable �and thus
distillable�. If a state is 1-distillable analogs then it is distill-
able. For pure states, 1-distillability is equivalent to distill-
ability, and thus every pure state is either locally preparable
or 1-distillable. This is not the case for mixed states. Due to
the existence of bound entangled states �i.e., states that are
neither locally preparable nor distillable�, and the fact that
1-D�D, there exist mixed states that are neither locally
preparable nor 1-distillable. We shall refer to all such states
as 1-bound.

Remarkably, by appropriately extending the set of opera-
tions that Alice and Bob can perform beyond LOCC, all
states become either locally preparable or 1-distillable. We
describe this extension of operations as supplementing
LOCC with an additional resource. Clearly, additional power
will affect the boundaries of what Alice and Bob can prepare
or distill; we are interested in a resource that precisely re-
moves the proper gap between LP and 1-D. Consider extend-
ing LOCC to allow all operations that preserve the positivity
of the partial transpose of states �29�. With this additional
resource, all states with positive partial transpose �PPT� can
be prepared locally. All states that are not PPT are
1-distillable with this additional power in the sense that they
can be mapped by a PPT-preserving operation E onto a 2
�2-dimensional space such that E��� is nonseparable �30�.
States that are not locally preparable with LOCC, but locally
preparable given LOCC plus the additional resource, can be
said to become locally preparable given the resource, de-
noted BLP. Similarly, the class of states that are not
1-distillable but become 1-distillable given the resource we
denote as B1-D. For mixed bipartite states under PPT-
preserving operations, the class BLP contains all PPT bound
entangled states and the class B1-D contains all non-PPT
states that are not 1-distillable; both classes are nonempty
�25–27�. See Fig. 1.

The categories BLP and B1-D are related in an interesting
way. Through an isomorphism between bipartite quantum
states and quantum operations, any PPT-preserving operation
can be implemented probabilistically using LOCC and a spe-
cific state in BLP �i.e., a specific PPT bound entangled state�
�31�. Recall that any B1-D state becomes 1-distillable if
Alice and Bob are given the additional resource of all PPT-
preserving operations. Thus, for every ��B1-D there exists
a state ��BLP such that � � � is 1-distillable. We say that

the state ��BLP activates the entanglement of the state �
�B1-D usig only LOCC operations �32�; see Fig. 2.

Another remarkable feature of mixed-state entanglement
is that, although states in B1-D are not 1-distillable, they
may nevertheless be distillable �33�. We define a state � to be
n-distillable �in n-D� if there exists an LOCC operation En
onto a �2�2�-dimensional space such that En���n� is non-
separable. In other words, the joint state ��n is 1-distillable.
If a state is n-distillable for some n then it is distillable. �In
fact, it has been shown �33� that n-D is a proper subset of D
for all finite n.� Thus, mixed-state entanglement exhibits
multicopy distillability, meaning that there exist states in
B1-D that are not 1-distillable but that are n-distillable for
some n	2.

There remain, however, many open questions regarding
the general structure of mixed-state entanglement. Perhaps
the most important question from the point of view of quan-
tum information processing is: Are all states in B1-D distill-
able?

III. AN ANALOGY IN QUANTUM OPTICS

To introduce the concepts and results developed later in
this paper, we first begin by providing a simple example of
how the phenomena arising in the context of mixed-state
entanglement have precise analogs in the structure of pure-
state entanglement under a restriction on operations. Specifi-
cally, we consider some well-studied states from quantum
optics and the restriction of a local photon-number SSR.

A. Local photon-number superselection rule

The restriction of a local photon-number SSR implies that
a party cannot prepare coherent superpositions of states of
different local photon number �starting with states without
coherence�, nor measure such coherences, nor implement a

FIG. 1. Illustration of the division of all bipartite mixed states
into four classes. When restricted to LOCC, there is a proper gap
between what is locally preparable and what is 1-D. This gap con-
tains 1-bound states. If an additional resource is supplied, allowing
for all PPT-preserving operations, then all 1-bound states either be-
come locally preparable �BLP� or become 1-distillable �B1-D�.

FIG. 2. Illustration of activation of bound entanglement. A BLP
state � can be used to “activate” the entanglement of a B1-D state
�, i.e., the combined state � � � is 1-D.
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transformation that creates such coherence. For instance, if
Alice is restricted by a local photon-number superselection
rule, she cannot prepare a state of the form �1/�2���0�A

+ �1�A�, where �n�A denotes an n-photon eigenstate of a mode
in Alice’s possession. However, she can prepare the state
�1/�2���01�A+ �10�A� on a pair of modes in her possession
�where �01�A= �0�A1

� �1�A2
, etc.�, because this state is an

eigenstate of total local photon number.
A local photon-number SSR applies to multiparty quan-

tum optics experiments when the parties do not share a com-
mon phase reference �16,19�. This connection between SSRs
and reference frames can be seen as follows. In optical ex-
periments, states of an optical mode are always referred to
some phase reference. Consider several optical modes dis-
tributed between two parties, Alice and Bob. Suppose there
is a third party, Charlie, who has a local phase reference—for
example, a high intensity laser—to which the quantum states
of Alice and Bob’s optical modes can be referred. Suppose
further that Alice and Bob do not share this phase reference,
i.e., their lasers are not phase-locked with Charlie’s. The
relative phase between their phase references and Charlie’s is
therefore completely unknown.

We now demonstrate that this unknown phase relation
leads to a local photon-number SSR. Let Alice prepare a
quantum state of her local optical modes, which she repre-
sents by a density operator �A relative to her phase reference.
If the relative phase between Alice and Charlie’s phase ref-
erences was known to be �, then this same state would be

represented by the density operator e−i�N̂A�Aei�N̂A relative to

Charlie’s phase reference, where N̂A is Alice’s local photon
number operator. Given that � is completely unknown, one
must average over its possible values to obtain the state rela-
tive to Charlie. This state is

UA��A� � 	
0

2
 d�

2

e−i�N̂A�Aei�N̂A, �1�

which is equivalent to

UA��A� = 

n

�n
A�A�n

A, �2�

where �n
A is the projector onto the nth eigenspace of N̂A. The

map UA removes all coherence between states of differing
total photon number on Alice’s systems. Similarly, any op-
erations Alice implements relative to her phase reference are
redescribed relative to Charlie’s phase reference as opera-
tions that commute with UA. Thus, relative to Charlie, Alice
experiences a restriction on operations that is described by a

superselection rule for local photon number N̂A as defined in
Ref. �21�. A similar argument applies to states and operations
of Bob relative to Charlie, characterized by a map UB. Thus,
the situation where Alice and Bob lack Charlie’s phase ref-
erence is a restriction formally equivalent to a superselection
rule for local photon number.

We note that although the term “superselection rule” was
initially introduced to describe an in principle restriction on
quantum states and operations �34�, it has been emphasized
by Aharonov and Susskind �35� that whether or not coherent

superpositions of a particular observable are possible is a
practical matter, depending on the availability of a suitable
reference system. Modern arguments in favor of this view
may be found in Refs. �21,36,37�, and we follow the practice
of using the term “superselection rule” to describe both in
principle and practical restrictions on operations.

B. Bound entanglement in pure-state quantum optics

In such situations, there has been considerable debate
over the entanglement properties of certain types of states,
such as the two-mode single-photon state �3–7�

1
�2

��0�A�1�B + �1�A�0�B� . �3�

There is a temptation to say that this state is entangled sim-
ply because of its nonproduct form. However, it is far more
useful to consider whether or not this state satisfies certain
operational notions of entanglement. One such notion is
whether a state can be used to violate a Bell inequality. An-
other is whether it is useful as a resource for quantum infor-
mation processing, for instance, to teleport qubits or imple-
ment a dense coding protocol. In the context of a local
photon-number SSR, this two-mode single-photon state fails
to satisfy either of these notions of entanglement, because all
such tasks would require Alice and Bob to violate the local
photon-number SSR. A different but equally common notion
of entanglement is that a state is entangled if it cannot be
prepared by LOCC. The two-mode single-photon state cer-
tainly does fit this notion because the pure nonproduct states
cannot be prepared by LOCC. Thus we see that operational
notions of entanglement that coincided for pure states under
unrestricted LOCC, namely being not locally preparable and
being useful as a resource for tasks such as teleportation or
violating a Bell inequality, do not coincide under a local
photon-number SSR, and the state in question is judged en-
tangled by one notion and not the other.1

This already has the flavor of the phenomenon of bound
entanglement. However, strictly speaking, the two notions of
entanglement that were explored in Sec. II were local prepa-
rability and 1-distillability. As one might expect from the
above comments, these two notions do not coincide either, as
we now show.

Consider a state of the form

1
�2

��01�A�10�B + �10�A�01�B� . �4�

This state is certainly not locally preparable. In addition, it
can be used to violate a Bell inequality, implement dense
coding, and so on, despite the SSR. This is because Alice and
Bob can still implement any measurements they please in the
two-dimensional subspaces spanned by �01� and �10�. Thus, a
useful notion of distillability for a bipartite pure state in the

1Of course, if there is no local photon-number SSR, this state
would satisfy all of these notions of entanglement, as emphasized
by van Enk �7�. In particular, no such SSR would apply if all parties
share a common phase reference, as discussed in Sec. III C.
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context of a local photon number superselection rule is
whether n copies of the state can be converted into nr copies
of �1/�2���01�A�10�B+ �10�A�01�B� for some r�0. A useful
notion of 1-distillability for a bipartite pure state in the con-
text of a local photon number superselection rule is whether
it can be projected to a nonproduct state in some 2�2 sub-
space, where the two-dimensional local spaces are eigens-
paces of local photon number.

By this definition, the state �1/�2���0�A�1�B+ �1�A�0�B� is
clearly not 1-distillable under the local photon number SSR
because the subspace spanned by ��0�, �1�� cannot be mapped
to the subspace spanned by ��01�, �10�� under the restricted
operations. This establishes the existence of pure states that
are neither locally preparable nor 1-distillable under the local
photon number SSR. Thus, they are analogous to the
1-bound states introduced for mixed-state entanglement.

Another class of states whose entanglement properties
have been discussed recently in the quantum optics literature
are those that are separable but not locally preparable under a
local photon-number superselection rule �10,19�. Examples
of such states2 are

� + �A� + �B, �− �A�− �B, �5�

where �± �= �1/�2���0�± �1��. Because of the SSR, these
states cannot be prepared locally. But they are not
1-distillable either because they are product states. Thus,
they also lie in the gap between what is locally preparable
and what is 1-distillable. Verstraete and Cirac �19� identified
such states as a “new type of nonlocal resource,” and van
Enk �38� identified states of the form of Eq. �5� as a standard
unit of this nonlocal resource, which he called a “refbit.” We
can identify these states also as analogues of the 1-bound
states of mixed-state entanglement.

C. A resource to “lift” the superselection rule

In the context of a SSR, there is also a resource that
precisely removes the gap between what is locally preparable
and 1-distillable �as occurred in mixed-state entanglement by
extending LOCC to all PPT-preserving operations�. Recall,
as described above, that a local photon-number SSR applies
if Alice and Bob are uncorrelated with the phase reference of
Charlie, who is preparing the bipartite quantum states.
Clearly, if Alice and Bob are given phase references that are
precisely correlated with Charlie’s, then they no longer face
any restrictions beyond that of LOCC. Thus, for Alice and
Bob to possess a shared phase reference is for them to pos-
sess a resource that “lifts” the SSR. Given this resource,
states such as �1/�2���0�A�1�B+ �1�A�0�B� become
1-distillable, while states such as �+ �A�+ �B become locally
preparable.

D. Activation and distillation in pure-state quantum optics

Finally, we demonstrate that there exist analogous pro-
cesses of activation and multicopy distillation in this sce-

nario. Both of these processes have been discussed �albeit
using different terminology� by van Enk �38� for the specific
quantum optical state examples we present here.

Combining �1/�2���0�A�1�B+ �1�A�0�B� �a state which, by
itself, is not 1-distillable under a local photon-number SSR�
with �+ �A�+ �B one obtains a state that is 1-distillable. The
state �+ �A�+ �B is said to activate the entanglement of
�1/�2���0�A�1�B+ �1�A�0�B�. This is seen as follows. Let Alice
and Bob both perform a quantum non-demolition measure-
ment of local photon number, and post-select the case where
they both find a local photon number of 1. The resulting state
is

�1
A

� �1
B 1

�2
��0�A�1�B + �1�A�0�B�� + �A� + �B�

�
1
�2

��01�A�10�B + �10�A�01�B� . �6�

We note that the controversy over the use of the state
�1/�2���0�A�1�B+ �1�A�0�B� to demonstrate quantum nonlocal-
ity �3–6,8,9� can be resolved by recognizing the role of ac-
tivation. As we have shown, this state is not 1-distillable
when Alice and Bob do not share a correlated local phase
reference �i.e., when a local photon-number SSR applies�.
However, violations of a Bell inequality have recently been
demonstrated experimentally using this state �8,9�. One can
take two different perspectives on such an experiment. It is
illustrative to consider them both.

In Ref. �8�, in addition to the state �1/�2���0�A�1�B

+ �1�A�0�B�, a correlated pair of coherent states ��A��B,
where ���
n�e−��2/2n /�n!��n�, are assumed to be shared
between Alice and Bob. These modes are used as the local
oscillators in the homodyne detections at each wing. Noting
that neither �1/�2���0�A�1�B+ �1�A�0�B� nor ��A��B are
1-distillable under the superselection rule, it is unclear how it
is possible to violate the Bell inequality using such re-
sources. The resolution of the puzzle is that the product of
coherent states ��A��B �similar to the state �+ �A�+ �B� acti-
vates the entanglement of the two-mode single photon state.
To see this, we note that the same measurement of local
photon number as described above projects the state onto a
nonproduct state of random but definite local photon number,
allowing for a demonstration of nonlocality within the con-
straints of the SSR. �Such a measurement is, in fact, imple-
mented using an ideal homodyne detection. Loosely speak-
ing, each observer’s homodyne detection apparatus couples
the two local modes at a beam splitter and then measures the
number of photons in each of the two output ports. This
incorporates a measurement of the total local photon number
because the latter quantity can be obtained as the sum of the
number in each output port. The difference of these two pho-
tocounts, which is typically the quantity of interest in homo-
dyne detection, yields the information necessary to demon-
strate the Bell inequality violation.�

An experimental demonstration of nonlocality using the
two-mode single photon state can also be described as fol-
lows �9�. Rather than treating the local oscillators as coherent
states, they are treated as correlated classical phase refer-

2References �10,19� considered states such as the equal mixture of
�+ �A�+ �B and �−�A�−�B. For simplicity, we restrict our attention to
pure states.
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ences. In this case, they constitute an additional resource that
“lifts” the restriction of the local photon-number SSR, and
the state �1/�2���0�A�1�B+ �1�A�0�B� becomes 1-distillable.
These two alternative descriptions are equally valid �37�.

The existence of such activation processes also resolves a
controversy concerning the source of entanglement in the
experimental realization of continuous-variable quantum
teleportation �39�. Again, we consider two different perspec-
tives on the experiment.

The first perspective is a variant of the one presented by
Rudolph and Sanders �10�. In our language, it can be synop-
sized as follows. Alice and Bob are presumed to be restricted
in the operations they can perform by a local photon-number
superselection rule. They share a two-mode squeezed state
���=�1−�2
n=0

� �n�n ,n�, where 0���1. In addition, they
share two other modes prepared in a product of coherent
states ����.3 The former is the purported entanglement re-
source in the teleportation protocol, while the latter is a
quantum version of a shared phase reference. These states
are analogous to �1/�2���0�A�1�B+ �1�A�0�B� and �+ �A�+ �B,
respectively—neither is 1-distillable when considered on its
own. So the question arises as to how teleportation could
possibly have been achieved when neither the purported en-
tanglement resource nor the quantum shared phase reference
are 1-distillable. The resolution to this puzzle is that although
individually, neither is 1-distillable, together they are: the
quantum shared phase reference activates the entanglement
in the two-mode squeezed state.

The second perspective is one wherein the shared phase
reference is treated classically �39�. As described above, this
acts as a resource which lifts the SSR, and causes the two-
mode squeezed state to become 1-distillable.

An analog of multicopy distillation can also be demon-
strated in our quantum optical example. For instance, the
state �1/�2���0�A�1�B+ �1�A�0�B� is two-distillable. The proto-
col, introduced in Ref. �20� and discussed in greater detail in
Ref. �40�, is as follows. As in the activation example above,
Alice and Bob both perform a quantum nondemolition mea-
surement of local photon number �on both local modes� and
post-select the case where they both find a local photon num-
ber of 1. The resulting state is

�1
A

� �1
B 1

�2
��0�A�1�B + �1�A�0�B���2

�
1
�2

��01�A�10�B + �10�A�01�B� , �7�

where ����2= ������. A process very similar to this two-copy
distillation has been demonstrated in quantum optics experi-
ments �see Ref. �41��, where correlated but unentangled pho-
ton pairs from parametric downconversion were made inci-
dent on the two input modes of a beamsplitter, so each
photon transforms to a state of the form �1/�2���0�A�1�B

+ �1�A�0�B�. Subsequently, measurements on the two output
modes are postselected for one photon detection at each out-

put mode. The fact that their postselected results are consis-
tent with a description of an entangled state demonstrates
that the entanglement of the state �1/�2���0�A�1�B+ �1�A�0�B�
has been distilled by making use of two copies.

We see that the remarkable �and often confusing� en-
tanglement properties of states when local operations are re-
stricted can be understood by recognizing that different op-
erational notions of entanglement do not coincide in this
case, leaving a structure akin to that of mixed-state entangle-
ment.

IV. PURE-STATE ENTANGLEMENT UNDER GENERAL
RESTRICTIONS

We now develop the analogy between mixed-state en-
tanglement and pure-state entanglement when the allowed
local quantum operations are restricted by a general �not
necessarily Abelian� SSR. We continue to consider only pure
states, because, although one could characterize mixed-state
entanglement under such restrictions, the classification of
such states would be at least as difficult as unrestricted
mixed-state entanglement.

A. Restricting operations through general superselection rules

We formulate a restriction on operations generally in the
form of a SSR associated with a finite or compact Lie group
G �21,36�. �A different concept of entanglement under re-
strictions on operations is discussed in Ref. �42�.�

The SSR we describe can be defined operationally as fol-
lows. Suppose Alice and Bob share a pair of systems, de-
scribed by a Hilbert space HA � HB, the states on which were
prepared and described by a third party, Charlie. Suppose
further that the local reference frames of Alice, Bob, and
Charlie, which transform via a group G, are uncorrelated:
that is, the element g�G relating Alice’s and Charlie’s local
frames is completely unknown, as is the element g��G re-
lating Bob and Charlie’s local frames. It follows that a prepa-
ration represented by a density matrix � on HA relative to
Alice’s frame is represented by the density matrix GA��� rela-
tive to Charlie’s frame, where

GA��� � 	
G

dv�g�TA�g��TA†�g� , �8�

with TA�g� a unitary representation of g on HA, and dv the
group-invariant �Haar� measure. The operations that Alice
can implement relative to Charlie’s frame are represented by
completely positive maps OA that commute with GA. A simi-
lar result holds for the operations that Bob can implement.
The joint LOCC operations that Alice and Bob can imple-
ment relative to Charlie’s frame are those represented by
maps OAB that commute with GA � GB. These are said to be
locally G-invariant �21�. This restriction on operations is re-
ferred to as a local SSR for G.

A local superselection rule for G induces the following
structure in the local Hilbert spaces �we consider HA�:

3The state assigned to this pair of resources in Ref. �10� is simply
a mixed version of the one we consider here.
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HA = �
n
Hn

A, �9�

i.e., each local Hilbert space is split into “charge sectors”
labeled by n and each carrying inequivalent representations
Tn

A of G. Each sector can be further decomposed into a tensor
product

Hn
A = Mn

A
� N n

A , �10�

of a subsystem Mn
A carrying an irreducible representation Tn

A

and a subsystem Nn
A carrying a trivial representation of G.

For an Abelian SSR, such as the photon-number SSR dis-
cussed in Sec. III, the subsystems Mn

N are one-dimensional,
and so the additional tensor product structure within the ir-
reps is not required; for a general SSR, they can be non-
trivial. The subsystems Nn

A are G-invariant noiseless sub-
systems relative to the decoherence map GA �43�. The action
of GA on a density operator � in terms of this decomposition
is

GA��� = 

n

DAn � IAn��n
A��n

A� , �11�

where �n
A is the projection onto the charge sector n, DAn is

the completely-positive trace-preserving map that takes ev-
ery operator on Mn

A to a constant times the identity operator
on that space, and IAn is the identity map over operators in
the space Nn

A. The effect of the local SSR, then, is to remove
the ability to prepare states or measure operators that have
coherence between different local charge sectors or that are
not completely mixed over the subsystems Mn

A. The same
structure arises for HB and provides an analogous decompo-
sition of GB. For further details, see Refs. �21,36�.

To address the issue of distillability of a state, we now
demonstrate how to treat multiple systems under a local
SSR. If the system that Alice exchanges with Charlie is made
up of several systems, HA= � iHAi, which are all defined rela-
tive to Alice’s frame, the uncertainty in the element g�G
relating Alice’s frame to Charlie’s is represented by Eq. �8�
using the tensor representation TA= � iT

Ai.

B. The analogy: general results

We now present our main results which demonstrate that
the structure of mixed-state entanglement is analogous in
many respects to the structure of pure-state entanglement
with a general restriction on local operations. The set of
LOCC operations that are locally G-invariant will be denoted
by G-LOCC. The set of pure bipartite states that are locally
preparable under a SSR for G, that is, preparable by
G-LOCC, will be denoted by LPG-SSR. A pure bipartite state
is in LPG-SSR iff �i� the state is a product state and �ii� it is
locally G-invariant. �Thus, not all pure product states are in
LPG-SSR.� A state ��� is 1-D with G-LOCC, denoted
1-DG-SSR, if there exists an operation E in G-LOCC mapping
��� onto a 2�2-dimensional space such that E�������� is
locally G-invariant and nonseparable. It follows from the
main theorem of Bartlett and Wiseman �21� that ��� is in
1-DG-SSR iff GA � GB�������� is 1-distillable with unrestricted
LOCC. Both LPG-SSR and 1-DG-SSR are nonempty; explicit

examples of each can be constructed as product/nonproduct
states within 2�2 subspaces or subsystems that are invariant
relative to GA � GB.

Result 1. With LOCC constrained by a local SSR for G,
the classes of pure bipartite states that are locally preparable
�LPG-SSR� or 1-distillable �1-DG-SSR� are both nonempty.

As with mixed-state entanglement, there is a proper gap
between these two classes. The class of states in the gap
contains both product and nonproduct pure states, and is
analogous to the class of 1-bound states in mixed-state en-
tanglement. An explicit example of such a state is a product
state that is not locally G-invariant for one or both parties.

Result 2. With LOCC constrained by a local SSR for G,
there exists a nonempty class of states that are neither locally
preparable nor 1-distillable �neither in LPG-SSR nor in
1-DG-SSR�.

Moreover, it is possible to extend G-LOCC in such a way
that any pure state in this gap becomes either locally prepa-
rable or 1-distillable. One simply lifts the restriction of the
local superselection by providing Alice and Bob with Char-
lie’s local frame, so that the local frames of the three parties
are correlated. With this additional resource, Alice and Bob
can now implement any operation in LOCC. Extending
G-LOCC to LOCC divides the proper gap between LPG-SSR
and 1-DG-SSR into two classes, both of which are nonempty.
All product states that are not locally G-invariant �i.e., prod-
uct states not in LPG-SSR� become locally preparable with
G-LOCC given the shared reference frame for G. We denote
this class BLPG-SSR. This result follows directly from the fact
that all pure product states are locally preparable with unre-
stricted LOCC. All nonproduct states ��� for which GA
� GB�������� is not 1-distillable �i.e., nonproduct states not in
1-DG-SSR� become 1-distillable with G-LOCC given the
shared reference frame for G. We denote this class
B1-DG-SSR. This result follows directly from the fact that all
pure nonproduct states are 1-distillable with unrestricted
LOCC.

Result 3. With LOCC constrained by a local SSR for G
and the additional resource of a shared local reference frame
for G, the SSR is “lifted,” and all states in the proper gap
either become locally preparable �BLPG-SSR� or become
1-distillable �B-1-DG-SSR�. Both classes BLPG-SSR and
B1-DG-SSR are nonempty.

Thus, we have demonstrated that the structure of Fig. 1
for mixed-state entanglement is analogous to the structure of
pure-state entanglement under the restriction of a SSR. Al-
though it is likely that the processes of activation and multi-
copy distillation also exist for general SSR, we only consider
this aspect of the analogy in depth in the context of Abelian
SSR. We turn to this in the next section.

V. ACTIVATION AND DISTILLATION OF PURE STATES
CONSTRAINED BY AN ABELIAN SUPERSELECTION

RULE

Although it has proven difficult to fully characterize acti-
vation and distillation processes in the context of mixed-state
entanglement, it is straightforward to do so in the context of
pure states with an Abelian SSR, as we now demonstrate. In
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particular, we completely classify all pure bipartite states in
terms of the number of copies needed for distillation.

An Abelian SSR is a SSR for the group H, all the ele-
ments of which commute. �In the following, H refers exclu-
sively to an Abelian group.� Superselection rules for local
charge or particle number are examples, with the relevant
Abelian group being U�1�. The SSR for photon number con-
sidered in Sec. III is another example, which can be seen
from the fact that the phase degree of freedom in quantum
optics transforms via the U�1� group, so that a shared phase
reference is an example of a shared reference frame for U�1�.
In the following, we will refer to the superselected quantity
for a Abelian SSR as a “charge,” and we will refer to local
charge eigenstates simply as eigenstates. We begin with a
useful lemma. �Note that this lemma fails for the case of
non-Abelian groups.�

Lemma. If ����HA � HB is a nonproduct state, then Al-
ice and Bob can, with H-LOCC, project ��� onto a 2�2
subspace SA � SB with local projectors �A and �B, such that
��A � �B���� is a nonproduct state.

Proof. Express ��� using an eigenstate basis ��n ,�A� for
HA as

��� = 

n,

�n,�A � ��n,�B, �12�

where n labels the “charge” and  other quantum numbers.
�The states ��n,�B are not necessarily orthogonal and are not
normalized.� For any nonproduct state ��� there must exist at
least two noncolinear ��n,�B in this decomposition, and thus
there exists a two-dimensional subspace wherein the projec-
tions of these two vectors are noncolinear. �

From this lemma, it follows that a state ��� is in
1-DH-SSR iff there exists a subspace SA � SB that is locally
H-invariant such that ��A � �B�����0. It follows that for a
nonproduct state that is not in 1-DH-SSR, that is, a state in
B1-DH-SSR, any subspace SA � SB such that ��A � �B���� is
a nonproduct state must fail to be locally H-invariant.

A. Activation under a local Abelian superselection rule

Theorem (activation). For all ����B1-DH-SSR, there ex-
ists a ����BLPH-SSR such that ��� � ��� is in 1-DH-SSR. We
say that ��� has activated the entanglement in ���.

Proof. Let

��� � ��A1 � �B1���� �13�

be a nonproduct state on a 2�2 subspace SA1 � SB1. Let
��ñ�A1

, �ñ��A1
� be a basis of eigenstates for SA1, where ñ

��n ,� and ñ���n� ,��; note that it can occur that n=n�
due to the existence of other quantum numbers . Similarly,
let ��m̃�B1

, �m̃��B1
� form a basis for SB1. Because ��� is in

B1-DH-SSR, SA1 � SB1 must fail to be H-invariant, and there-
fore either n�n� or m�m� or both. Let SA2 � SB2 be defined
analogously to SA1 � SB1, and define a state ���, confined to
these subspaces, as follows:

��� � ��ñ�A2
+ �ñ��A2

� � ��m̃�B2
+ �m̃��B2

� . �14�

Because either n�n� or m�m� or both, this state is not
locally H-invariant, and therefore is in BLP. Let Sn+n�

A be the

H-invariant subspace of SA1 � SA2 spanned by

��ñ�A1
� �ñ��A2

, �ñ��A1
� �ñ�A2

� . �15�

Define Sm+m�
B similarly. Projecting ��� � ��� onto Sn+n�

A

� Sm+m�
B can be performed probabilistically with H-LOCC,

and can easily be shown to result in a nonproduct state that is
locally H-invariant.

B. Distillation under a local Abelian superselection rule

We now present a complete characterization of the distill-
ability properties of any pure state constrained by a local
Abelian SSR. Specifically, we present two protocols for dis-
tillation of ����B1-DH-SSR. Protocol A requires three copies
of the state, and is based on activation. Protocol B requires
only two copies of the state. In both protocols one chooses a
local 2�2 subspace SA1 � SB1 with certain properties, and
��� is defined in terms of ��� as in Eq. �13�.

Distillation protocol A. This protocol works if SA1 � SB1

can be chosen such that A1
�ñ ����SB1 or A1

�ñ� ����SB1 is
not locally H-invariant, and B1

�m̃ ����SA1 or B1
�m̃� ���

�SA1 is not locally H-invariant �this requires n�n� and m
�m��. Projecting each copy k onto SAk � SBk yields, with
some probability, three copies of ���. On the first copy, Alice
measures ��ñ�A1

, �ñ��A1
�, and on the second copy Bob mea-

sures ��m̃�B2
, �m̃��B2

� thereby collapsing A2 and B1, with some
probability, to a product state that is not locally H-invariant,
and thus in BLPH-SSR. It can be shown, by following the
proof of the activation theorem, that this product state is in
fact sufficient to activate the entanglement in the third copy
of ���. In this case, ��� is in 3-DH-SSR.

Distillation protocol B. Consider two copies of ���. The
protocol requires one to project the first copy onto SA1

� SB1 and the second copy onto SA2 � SB2, and then to
project both copies onto Sn+n�

A
� Sm+m�

B �this subspace is de-
fined in the proof of the activation theorem�. The resulting
state has the form

�+�S+�A�S+�B + �−�S−�A�S−�B, �16�

where

�S±�A = �ñ�A1
�ñ��A2

± �ñ��A1
�ñ�A2

, �17�

and similarly for �S±�B. It can be shown that �− is necessarily
nonzero. Thus, if �+�0, then the resulting state is a non-
product locally H-invariant state, and ��� is in 2-DH-SSR.

Theorem (distillation). All pure nonproduct states are
distillable using H-LOCC, with at most three copies of the
state required for distillation, that is, B1-DH-SSR�1-DH-SSR
=3-DH-SSR.

Proof. For every state ��� in B1-DH-SSR for which distil-
lation protocol A fails, protocol B necessarily succeeds. The
proof is as follows. If protocol A fails, then for all choices of
SA � SB, the state ��� has a Schmidt basis �1� composed of
local eigenstates, and protocol B can be shown to work
whenever ��� is of this form. �

Although related, this theorem is different from the one
presented in Schuch et al. �23�. In Ref. �23�, it was shown
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how states constrained by an Abelian SSR can be converted,
using at most three copies, to the state �V-EPR�= �0�A�1�B
+ �1�A�0�B. As we argued in Sec. III, this state can be consid-
ered to be bound entangled when local operations are con-
strained by a photon-number superselection rule. In addition,
it is shown in Ref. �23� that this resource can be asymptoti-
cally converted to nonproduct locally H-invariant states. Our
result is stronger in that we show it is possible to prepare
�with some probability� an effective two-qubit entangled
state that is locally H-invariant using only operations obey-
ing the superselection rule and at most three copies of any
entangled pure state. This effective two-qubit state may then
be distilled by standard techniques to prepare locally
H-invariant maximally entangled pure states at some
asymptotic rate.

Finally, we note that we can completely characterize the
distillability properties of any pure state constrained by a
local Abelian SSR. We show that the class B1-D can be
divided into three nonempty regions by establishing that
1-DH-SSR is a proper subset of 2-DH-SSR and 2-DH-SSR is a
proper subset of 3-DH-SSR �i.e., protocol A sometimes fails
while protocol B succeeds�. States such as

��2D� � =
1
�2

��01�A�0�B + �10�A�1�B� , �18�

��2D� � =
1
�2

��01�A� + �B + �10�A�− �B� , �19�

��2D� � =
1
�2

��0�A�1�B + �1�A�0�B� , �20�

expressed in the Fock basis, are in 2-DH-SSR �using protocol
B�. None of them are locally H-invariant and therefore are
not in 1-DH-SSR. The state

��3D� =
1
�2

��0�A� + �B + �1�A�− �B� , �21�

is in 3-DH-SSR �as is any state in B1-D�. However, because
two copies of this state become separable when averaged
�uniformly� over H locally, it is not in 2-DH-SSR.

VI. DISCUSSION

In summary, we have shown how to reproduce the rich
classification scheme of mixed-state entanglement by re-
stricting local operations on the set of pure states so as to
create a proper gap between what is locally preparable and
what is 1-distillable. Debates over the entanglement proper-
ties of pure states under restricted operations, such as have
appeared in the quantum optics literature, are resolved by
recognizing novel categories of entanglement in this context.
Our results suggest that the exotic structure of mixed-state
entanglement is generic, and that developing entanglement
theory under other sorts of restrictions is a promising direc-
tion for further research.

For example, recent interest in creating bipartite entangled
states in condensed matter systems requires careful articula-
tion of the operational meaning of entanglement, due to the
various practical restrictions on operations on these systems.
Local particle-number superselection rules often apply in
practice, and as noted in Refs. �20,44,45�, for example, the
single-electron two-mode Fock state �1/�2���0�A�1�B

+ �1�A�0�B� has ambiguous entanglement properties under this
restriction. Wiseman and Vaccaro �20� have introduced an
operational measure, called entanglement of particles to
quantify the distillable entanglement under a local particle-
number SSR, and this two-mode single-electron Fock state
has no entanglement of particles by this measure. For this
reason, most proposals for creating bipartite entangled states
make use of spin or orbital angular momentum degrees of
freedom of multiple particles �46–48�. We note, however,
that the two-mode single-electron Fock state is an entangle-
ment resource akin to the two-mode single-photon state,
which we have shown to be useful through activation or
multi-copy distillation; also, a suitable shared U�1� reference
frame could “lift” the restriction of the SSR, and the two-
mode single-electron Fock state would be unambiguously
entangled with such a resource. Moreover, entangled states
between angular momentum degrees of freedom of different
particles will yield no real advantage over the two-mode
single-electron Fock state in situations wherein there is a
local SU�2� SSR. Such a SSR will be in force, for instance, if
the parties fail to share a Cartesian frame for spatial orienta-
tions �49�. As with quantum optical systems, we emphasize
the need to be operational when classifying or quantifying
entanglement.

The theory of entanglement for indistinguishable particles
is another situation where our results may shed some light.
Recent research has investigated the “quantum correlation
between particles,” �50,51� which relates to the correlations
between indistinguishable particles inherent in the symmetry
�or antisymmetry� of a many-particle wave function. Refer-
ence �20� argues that these quantum correlations are merely
“fluffy bunny entanglement,” �52� that is, operationally use-
less. Our work here supports this conclusion; we would say
that the entanglement is bound by the restriction of the in-
distinguishability of particles. Nonetheless, in analogy with
restrictions arising from SSRs, it may be worthwhile to con-
sider the possibility of “lifting” this restriction through an
appropriate shared resource.

The analogy we present here also suggests that it may be
fruitful to think of standard LOCC as a restriction relative to
the “more natural” PPT-preserving operations, and to con-
sider whether a resource that lifts this restriction might be
established with the same ease as a shared reference frame.
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