25 research outputs found

    Amalgame: Cosmological Constraints from the First Combined Photometric Supernova Sample

    Full text link
    Future constraints of cosmological parameters from Type Ia supernovae (SNe Ia) will depend on the use of photometric samples, those samples without spectroscopic measurements of the SNe Ia. There is a growing number of analyses that show that photometric samples can be utilised for precision cosmological studies with minimal systematic uncertainties. To investigate this claim, we perform the first analysis that combines two separate photometric samples, SDSS and Pan-STARRS, without including a low-redshift anchor. We evaluate the consistency of the cosmological parameters from these two samples and find they are consistent with each other to under 1σ1\sigma. From the combined sample, named Amalgame, we measure ΩM=0.328±0.024\Omega_M = 0.328 \pm 0.024 with SN alone in a flat Λ\LambdaCDM model, and ΩM=0.330±0.018\Omega_M = 0.330 \pm 0.018 and w=1.0160.058+0.055w = -1.016^{+0.055}_{-0.058} when combining with a Planck data prior and a flat wwCDM model. These results are consistent with constraints from the Pantheon+ analysis of only spectroscopically confirmed SNe Ia, and show that there are no significant impediments to analyses of purely photometric samples of SNe Ia.Comment: Submitting to MNRAS; comments welcom

    Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    Full text link
    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary scientific progress they would enable, and describes the most important technology development items. These are the mirrors, the detectors, and the high-contrast imaging technologies, whether internal to the observatory, or using an external occulter. Experience with JWST has shown that determined competitors, motivated by the development contracts and flight opportunities of the new observatory, are capable of achieving huge advances in technical and operational performance while keeping construction costs on the same scale as prior great observatories.Comment: 22 pages, RFI submitted to Astro2010 Decadal Committe

    Amalgame: Cosmological Constraints from the First Combined Photometric Supernova Sample

    No full text
    International audienceFuture constraints of cosmological parameters from Type Ia supernovae (SNe Ia) will depend on the use of photometric samples, those samples without spectroscopic measurements of the SNe Ia. There is a growing number of analyses that show that photometric samples can be utilised for precision cosmological studies with minimal systematic uncertainties. To investigate this claim, we perform the first analysis that combines two separate photometric samples, SDSS and Pan-STARRS, without including a low-redshift anchor. We evaluate the consistency of the cosmological parameters from these two samples and find they are consistent with each other to under 1σ1\sigma. From the combined sample, named Amalgame, we measure ΩM=0.328±0.024\Omega_M = 0.328 \pm 0.024 with SN alone in a flat Λ\LambdaCDM model, and ΩM=0.330±0.018\Omega_M = 0.330 \pm 0.018 and w=1.0160.058+0.055w = -1.016^{+0.055}_{-0.058} when combining with a Planck data prior and a flat wwCDM model. These results are consistent with constraints from the Pantheon+ analysis of only spectroscopically confirmed SNe Ia, and show that there are no significant impediments to analyses of purely photometric samples of SNe Ia

    Amalgame: cosmological constraints from the first combined photometric supernova sample

    No full text
    Future constraints of cosmological parameters from Type Ia supernovae (SNe Ia) will depend on the use of photometric samples, those samples without spectroscopic measurements of the SNe Ia. There is a growing number of analyses that show that photometric samples can be utilised for precision cosmological studies with minimal systematic uncertainties. To investigate this claim, we perform the first analysis that combines two separate photometric samples, SDSS and Pan-STARRS, without including a low-redshift anchor. We evaluate the consistency of the cosmological parameters from these two samples and find they are consistent with each other to under 1σ. From the combined sample, named Amalgame, we measure ΩM=0.328±0.024 with SN alone in a flat ΛCDM model, and ΩM=0.330±0.018 and w=−1.016+0.055−0.058 when combining with a Planck data prior and a flat wCDM model. These results are consistent with constraints from the Pantheon+ analysis of only spectroscopically confirmed SNe Ia, and show that there are no significant impediments to analyses of purely photometric samples of SNe Ia

    The Pantheon+ Analysis: Cosmological Constraints

    No full text
    We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z=0.001z=0.001 to 2.26. This work features an increased sample size, increased redshift span, and improved treatment of systematic uncertainties in comparison to the original Pantheon analysis and results in a factor of two improvement in cosmological constraining power. For a FlatΛ\LambdaCDM model, we find ΩM=0.338±0.018\Omega_M=0.338\pm0.018 from SNe Ia alone. For a Flatw0w_0CDM model, we measure w0=0.89±0.13w_0=-0.89\pm0.13 from SNe Ia alone, H0=72.861.06+0.94_0=72.86^{+0.94}_{-1.06} km s1^{-1} Mpc1^{-1} when including the Cepheid host distances and covariance (SH0ES), and w0=0.9780.031+0.024w_0=-0.978^{+0.024}_{-0.031} when combining the SN likelihood with constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w0w_0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a Flatw0waw_0w_aCDM universe, and measure wa=0.41.8+1.0w_a=-0.4^{+1.0}_{-1.8} from Pantheon+ alone, H0=73.401.22+0.99_0=73.40^{+0.99}_{-1.22} km s1^{-1} Mpc1^{-1} when including SH0ES, and wa=0.650.32+0.28w_a=-0.65^{+0.28}_{-0.32} when combining Pantheon+ with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one third of the total uncertainty in the measurement of H0_0 and cannot explain the present "Hubble tension" between local measurements and early-Universe predictions from the cosmological model

    The Pantheon+ Analysis: Cosmological Constraints

    Get PDF
    We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z=0.001z=0.001 to 2.26. This work features an increased sample size, increased redshift span, and improved treatment of systematic uncertainties in comparison to the original Pantheon analysis and results in a factor of two improvement in cosmological constraining power. For a FlatΛ\LambdaCDM model, we find ΩM=0.338±0.018\Omega_M=0.338\pm0.018 from SNe Ia alone. For a Flatw0w_0CDM model, we measure w0=0.89±0.13w_0=-0.89\pm0.13 from SNe Ia alone, H0=72.861.06+0.94_0=72.86^{+0.94}_{-1.06} km s1^{-1} Mpc1^{-1} when including the Cepheid host distances and covariance (SH0ES), and w0=0.9780.031+0.024w_0=-0.978^{+0.024}_{-0.031} when combining the SN likelihood with constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w0w_0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a Flatw0waw_0w_aCDM universe, and measure wa=0.41.8+1.0w_a=-0.4^{+1.0}_{-1.8} from Pantheon+ alone, H0=73.401.22+0.99_0=73.40^{+0.99}_{-1.22} km s1^{-1} Mpc1^{-1} when including SH0ES, and wa=0.650.32+0.28w_a=-0.65^{+0.28}_{-0.32} when combining Pantheon+ with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one third of the total uncertainty in the measurement of H0_0 and cannot explain the present "Hubble tension" between local measurements and early-Universe predictions from the cosmological model
    corecore