8,065 research outputs found

    Gravity from a fermionic condensate of a gauge theory

    Full text link
    The most prominent realization of gravity as a gauge theory similar to the gauge theories of the standard model comes from enlarging the gauge group from the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan gravity the symmetry must be broken, which can be accomplished by known quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle physics and condensed matter systems, we propose that the symmetry can naturally be broken by a homogenous and isotropic fermionic condensate of ordinary spinors. We demonstrate that the condensate is compatible with the Einstein-Cartan equations and can be imposed in a fully de Sitter invariant manner. This lends support, and provides a physically realistic mechanism for understanding gravity as a gauge theory with a spontaneously broken local de Sitter symmetry.Comment: 16 page

    Development of an ecosystem approach to the monitoring and management of Western Australian fisheries. Final FRDC report : project 2005/063

    Get PDF
    Objectives 1. Test the robustness of statistical procedures to identify impacts of multi-sector fishing on community composition using existing fishery data. 2. Assess the level of change in community composition in each bioregion of WA during the previous 30 years. 3. Identify key data to which ecosystem structure and management strategies are most sensitive and which should be collected in the future. 4. Identify critical changes in exploitation and/or environment that would impact marine ecosystems markedly. 5. Identify areas where more detailed research and/or monitoring are needed

    The Development of a Scoring Tool for the Measurement of Performance in Managing Hypotension and Intra-Operative Cardiac Arrest during Spinal Anaesthesia for Caesarean Section

    Get PDF
    Background: At level one hospitals in South Africa a high annual number of maternal deaths occur due to the unrecognised/ untreated complications of spinal anaesthesia. The authors developed a clinical scenario and scoring system to measure intern performance in managing hypotension and cardiac arrest during spinal anaesthesia for caesarean section on a human patient simulator. This system was then subjected to tests of validity and reliability.Methods: The simulator-based clinical scenario was developed by two specialist anaesthesiologists. A modified Delphi technique was used to achieve consensus among 10 anaesthetic specialists regarding a standardised scoring system. A total of 20 medical officers with a Diploma in Anaesthesiology and 20 interns completed the scenario and were scored by two senior anaesthesiologists.Results: Medical officers scored an average of 252 and 246 points, whereas interns scored an average of 216 and 215 points (p = 0.005 and p = 0.013, respectively). The scoring instrument demonstrated high inter-assessor reliability with an intra-class correlation coefficient of 0.983.Conclusions: The scoring tool was shown to be valid and reliable. It offers a standardised assessment process and may be used to refine institutional intern training programmes, with a view to improving anaesthesia skills in community service medical officers.Keywords: Anaesthesia Spinal, Caesarean Section, Internship, Residency, Simulation, Simulato

    Spontaneously generated X-shaped light bullets

    Full text link
    We observe the formation of an intense optical wavepacket fully localized in all dimensions, i.e. both longitudinally (in time) and in the transverse plane, with an extension of a few tens of fsec and microns, respectively. Our measurements show that the self-trapped wave is a X-shaped light bullet spontaneously generated from a standard laser wavepacket via the nonlinear material response (i.e., second-harmonic generation), which extend the soliton concept to a new realm, where the main hump coexists with conical tails which reflect the symmetry of linear dispersion relationship.Comment: 5 pages, 4 figures, submitted for publicatio

    Criteria for the experimental observation of multi-dimensional optical solitons in saturable media

    Full text link
    Criteria for experimental observation of multi-dimensional optical solitons in media with saturable refractive nonlinearities are developed. The criteria are applied to actual material parameters (characterizing the cubic self-focusing and quintic self-defocusing nonlinearities, two-photon loss, and optical-damage threshold) for various glasses. This way, we identify operation windows for soliton formation in these glasses. It is found that two-photon absorption sets stringent limits on the windows. We conclude that, while a well-defined window of parameters exists for two-dimensional solitons (spatial or spatiotemporal), for their three-dimensional spatiotemporal counterparts such a window \emph{does not} exist, due to the nonlinear loss in glasses.Comment: 8 pages, to appear in Phys. Rev.

    Near-field radiative heat transfer between macroscopic planar surfaces

    Get PDF
    Near-field radiative heat transfer allows heat to propagate across a small vacuum gap in quantities that are several orders of magnitude greater then the heat transfer by far-field, blackbody radiation. Although heat transfer via near-field effects has been discussed for many years, experimental verification of this theory has been very limited. We have measured the heat transfer between two macroscopic sapphire plates, finding an increase in agreement with expectations from theory. These experiments, conducted near 300 K, have measured the heat transfer as a function of separation over mm to μ\mum and as a function of temperature differences between 2.5 and 30 K. The experiments demonstrate that evanescence can be put to work to transfer heat from an object without actually touching it

    Designing adaptive structures for whole life energy savings

    Get PDF
    Designing structures with minimal environmental impact is emerging as a seriou concern in the construction sector. Conventional structural design practice involves designing first for strength, followed by secondary checks on deflections and other serviceability limits states. If these limits are exceeded, the con-ventional solution has been to add material to increase stiffness. When the design is governed by unpredicta-ble events such as fluctuating loads, strong wind storms or earthquakes, the structure is effectively overde-signed for most of its working life. This paper presents a methodology to design adaptive structures that minimize the whole life energy consumption. The methodology is illustrated on plane pin-jointed trusses, both determinate and indeterminate. Strategically placing actuators allow the internal flow of forces to be ho-mogenized and displacements to be controlled. The actuators only start working when the loads reach a cer-tain threshold. Below this threshold, the structure resists loads mainly passively thereby limiting significantly the operational energy used. It was found that both indeterminate and determinate topologies bring substantial energy savings up to 70% of the total energy

    Opioids depress cortical centers responsible for the volitional control of respiration

    Get PDF
    Respiratory depression limits provision of safe opioid analgesia and is the main cause of death in drug addicts. Although opioids are known to inhibit brainstem respiratory activity, their effects on cortical areas that mediate respiration are less well understood. Here, functional magnetic resonance imaging was used to examine how brainstem and cortical activity related to a short breath hold is modulated by the opioid remifentanil. We hypothesized that remifentanil would differentially depress brain areas that mediate sensory-affective components of respiration over those that mediate volitional motor control. Quantitative measures of cerebral blood flow were used to control for hypercapnia-induced changes in blood oxygen level-dependent (BOLD) signal. Awareness of respiration, reflected by an urge-to-breathe score, was profoundly reduced with remifentanil. Urge to breathe was associated with activity in the bilateral insula, frontal operculum, and secondary somatosensory cortex. Localized remifentanil-induced decreases in breath hold-related activity were observed in the left anterior insula and operculum. We also observed remifentanil-induced decreases in the BOLD response to breath holding in the left dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, and periaqueductal gray, brain areas that mediate task performance. Activity in areas mediating motor control (putamen, motor cortex) and sensory-motor integration (supramarginal gyrus) were unaffected by remifentanil. Breath hold-related activity was observed in the medulla. These findings highlight the importance of higher cortical centers in providing contextual awareness of respiration that leads to appropriate modulation of respiratory control. Opioids have profound effects on the cortical centers that control breathing, which potentiates their actions in the brainstem

    Chiral Perturbation Theory for τρπντ\tau \to \rho \pi\nu_\tau, τKπντ\tau \to K^* \pi \nu_\tau, and τωπντ\tau \to \omega \pi \nu_\tau

    Get PDF
    We use heavy vector meson SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral perturbation theory to predict differential decay distributions for τρπντ\tau \rightarrow \rho \pi \nu_\tau and τKπντ\tau \rightarrow K^* \pi \nu_\tau in the kinematic region where pVpπ/mVp_V \cdot p_\pi/m_V (here V=ρV = \rho or KK^*) is much smaller than the chiral symmetry breaking scale. Using the large number of colors limit we also predict the rate for τωπντ\tau \rightarrow \omega \pi \nu_\tau in this region (now V=ωV = \omega). Comparing our prediction with experimental data, we determine one of the coupling constants in the heavy vector meson chiral Lagrangian.Comment: 14 pages, latex 2e. We include the decay of the tau into the omega, pi minus and the tau neutrino, and extract a value for the coupling constant g2, using experimental dat
    corecore