333 research outputs found

    A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing

    Get PDF
    Acid-sensitive K+ channels of the tandem P-domain K+-channel family (TASK-1 and TASK-3) have been implicated in peripheral and central respiratory chemosensitivity; however, because of the lack of decisive pharmacological agents, the final proof of the role of the TASK channel in the chemosensory control of breathing has been missing. In the mouse, TASK-1 and TASK-3 channels are dispensable for central respiratory chemosensitivity (Mulkey et al., 2007Go). Here, we have used knock-out animals to determine whether TASK-1 and TASK-3 channels play a role in the carotid body function and chemosensory control of breathing exerted by the carotid body chemoreceptors. Ventilatory responses to hypoxia (10% O2 in inspired air) and moderate normoxic hypercapnia (3ā€“6% CO2 in inspired air) were significantly reduced in TASK-1 knock-out mice. In contrast, TASK-3-deficient mice showed responses to both stimuli that were similar to those developed by their wild-type counterparts. TASK-1 channel deficiency resulted in a marked reduction of the hypoxia (by 49%)- and CO2 (by 68%)-evoked increases in the carotid sinus nerve chemoafferent discharge recorded in the in vitro superfused carotid body/carotid sinus nerve preparations. Deficiency in both TASK-1 and TASK-3 channels increased baseline chemoafferent activity but did not cause a further reduction of the carotid body chemosensory responses. These observations provide direct evidence that TASK-1 channels contribute significantly to the increases in the carotid body chemoafferent discharge in response to a decrease in arterial PO2 or an increase in PCO2/[H+]. TASK-1 channels therefore play a key role in the control of ventilation by peripheral chemoreceptors

    Modulation of GABA-A receptor function and sleep

    Get PDF
    The intravenous general anaesthetics (propofol & etomidate), the barbiturates, steroids (e.g. alphaxalone, allopregnanalone), the benzodiazepines and the widely prescribed ā€˜sleeping pillā€™, the imidazopyridine zolpidem, are all positive allosteric modulators (PAMs) of GABAA receptors. PAMs enhance ongoing GABAergic communication between neurons. For treating primary insomnia, zolpidem remains a gold-standard medication ā€” it reduces the latency to NREM sleep with a rapid onset and short half-life, leading to relatively few hangover effects. In this review, we discuss the role of the different GABAA receptor subtypes in the action of sleep-promoting drugs. Certain neuronal hub areas exert disproportionate effects on the brain's vigilance states. For example, injecting GABAA agonists and PAMs into the mesopontine tegmental anaesthesia area (MPTA) induces an anaesthetic-like state. Similarly, by selectively increasing the GABA drive onto arousal-promoting nuclei, such as the histaminergic neurons in the tuberomammillary nucleus, a more natural NREM-like sleep emerges. Some patients suffering from idiopathic hypersomnia have an unidentified GABAA receptor PAM in their cerebral spinal fluid. Treating these patients with benzodiazepine PAM site antagonists improves their symptoms. More knowledge of endogenous GABAA receptor PAMs could provide insight into sleep physiology

    Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons

    Get PDF
    Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on Ī±2 and/or Ī±3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on Ī±1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor Ī³2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of Ī³2I77 mice were made selectively sensitive to zolpidem by genetically swapping the Ī³2I77 subunits with Ī³2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep

    Histamine release in the prefrontal cortex excites fast-spiking interneurons while GABA released from the same axons inhibits pyramidal cells

    Get PDF
    We studied how histamine and GABA release from axons originating from the hypothalamic tuberomammillary nucleus (TMN) and projecting to the prefrontal cortex (PFC) influence circuit processing. We optostimulated histamine/GABA from genetically defined TMN axons that express the histidine decarboxylase gene (TMNHDC axons). Whole-cell recordings from PFC neurons in layer 2/3 of prelimbic, anterior cingulate, and infralimbic regions were used to monitor excitability before and after optostimulated histamine/GABA release in male and female mice. We found that histamine-GABA release influences the PFC through actions on distinct neuronal types: the histamine stimulates fast-spiking interneurons; and the released GABA enhances tonic (extrasynaptic) inhibition on pyramidal cells (PyrNs). For fast-spiking nonaccommodating interneurons, histamine released from TMNHDC axons induced additive gain changes, which were blocked by histamine H1 and H2 receptor antagonists. The excitability of other fast-spiking interneurons in the PFC was not altered. In contrast, the GABA released from TMNHDC axons predominantly produced divisive gain changes in PyrNs, increasing their resting input conductance, and decreasing the slope of the inputā€“output relationship. This inhibitory effect on PyrNs was not blocked by histamine receptor antagonists but was blocked by GABAA receptor antagonists. Across the adult life span (from 3 to 18 months of age), the GABA released from TMNHDC axons in the PFC inhibited PyrN excitability significantly more in older mice. For individuals who maintain cognitive performance into later life, the increases in TMNHDC GABA modulation of PyrNs during aging could enhance information processing and be an adaptive mechanism to buttress cognition

    Understanding sleep regulation in normal and pathological conditions, and why it matters

    Get PDF
    Sleep occupies a peculiar place in our lives and in science, being both eminently familiar and profoundly enigmatic. Historically, philosophers, scientists and artists questioned the meaning and purpose of sleep. If Shakespeareā€™s verses from MacBeth depicting ā€œSleep that soothes away all our worriesā€ and ā€œrelieves the weary laborer and heals hurt mindsā€ perfectly epitomize the alleviating benefits of sleep, it is only during the last two decades that the growing understanding of the sophisticated sleep regulatory mechanisms allows us to glimpse putative biological functions of sleep. Sleep control brings into play various brain-wide processes occurring at the molecular, cellular, circuit, and system levels, some of them overlapping with a number of disease-signaling pathways. Pathogenic processes, including mood disorders (e.g., major depression) and neurodegenerative illnesses such Huntingtonā€™s or Alzheimerā€™s diseases, can therefore affect sleep-modulating networks which disrupt the sleep-wake architecture, whereas sleep disturbances may also trigger various brain disorders. In this review, we describe the mechanisms underlying sleep regulation and the main hypotheses drawn about its functions. Comprehending sleep physiological orchestration and functions could ultimately help deliver better treatments for people living with neurodegenerative diseases

    Galanin neurons unite sleep homeostasis and Ī±2-adrenergic sedation

    Get PDF
    Our urge to sleep increases with time spent awake, until sleep becomes inescapable. The sleep following sleep deprivation is longer and deeper, with an increased power of delta (0.5 - 4 Hz) oscillations, a phenomenon termed sleep homeostasis [1-4]. Although widely-expressed genes regulate sleep homeostasis [1, 4-10], and the process is tracked by somnogens and phosphorylation [1, 3, 7, 11-14], at the circuit level sleep homeostasis has remained mysterious. Previously we found that sedation induced with 2 adrenergic agonists (e.g. dexmedetomidine) and sleep homeostasis both depend on the preoptic (PO) hypothalamus [15, 16]. Dexmedetomidine, increasingly used for long-term sedation in intensive care units [17], induces a NREM-like sleep but with undesirable hypothermia [18, 19]. Within the PO, various neuronal subtypes (e.g. GABA/galanin and glutamate/NOS1) induce NREM sleep [20-22] and concomitant body cooling [21, 22]. This could be because NREM sleepā€™s restorative effects depend on lower body temperature [23, 24]. Here, we show that mice with lesioned PO galanin neurons have reduced sleep homeostasis: in the recovery sleep following sleep deprivation, there is a diminished increase in delta power, and the mice catch up little on lost sleep. Furthermore, dexmedetomidine cannot induce high-power delta oscillations or sustained hypothermia. Some hours after dexmedetomidine administration to wild-type mice there is a rebound in delta power when they enter normal NREM sleep, reminiscent of emergence from torpor. This delta rebound is reduced in mice lacking PO galanin neurons. Thus, sleep homeostasis and dexmedetomidine-induced sedation require PO galanin neurons and likely share common mechanisms

    nNOS-expressing neurons in the ventral tegmental area and substantia nigra pars compacta

    Get PDF
    GABA neurons in the VTA and SNc play key roles in reward and aversion through their local inhibitory control of dopamine neuron activity and through long-range projections to several target regions including the nucleus accumbens. It is not clear whether some of these GABA neurons are dedicated local interneurons or if they all collateralize and send projections externally as well as making local synaptic connections. Testing between these possibilities has been challenging in the absence of interneuron-specific molecular markers. We hypothesized that one potential candidate might be neuronal nitric oxide synthase (nNOS), a common interneuronal marker in other brain regions. To test this, we used a combination of immunolabelling (including antibodies for nNOS that we validated in tissue from nNOS-deficient mice) and cell type-specific virus-based anterograde tracing in mice. We found that nNOS-expressing neurons, in the parabrachial pigmented (PBP) part of the VTA and the SNc were GABAergic and did not make detectable projections, suggesting they may be interneurons. In contrast, nNOS-expressing neurons in the rostral linear nucleus (RLi) were mostly glutamatergic and projected to a number of regions, including the lateral hypothalamus (LH), the ventral pallidum (VP), and the median raphe (MnR) nucleus. Taken together, these findings indicate that nNOS is expressed by neurochemically- and anatomically-distinct neuronal sub-groups in a sub-region-specific manner in the VTA and SNc
    • ā€¦
    corecore