167 research outputs found

    Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Climate Science Aspects

    Get PDF
    The "global warming hiatus" since the 1998 El Nino, highlighted by Meehl et al., and the resulting "missing energy" problem highlighted by Trenberth et al., has opened the door to a more fundamental view of climate change than mere surface air temperature. That new view is based on two variables which are strongly correlated: the rate of change of ocean heat content d(OHC)/dt; and Earth Radiation Imbalance (ERI) at the top of the atmosphere, whose guesstimated range is 0.4 to 0.9 Watts per square meters (this imbalance being mainly due to increasing CO2). The Argo float array is making better and better measurements of OHC. But existing satellite systems cannot measure ERI to even one significant digit. So, climate model predictions of ERI are used in place of real measurements of it, and the satellite data are tuned to the climate model predictions. Some oceanographers say "just depend on Argo for understanding the global warming hiatus and the missing energy", but we don't think this is a good idea because d(OHC)/dt and ERI have different time scales and are never perfectly correlated. We think the ERB community needs to step up to measuring ERI correctly, just as oceanographers have deployed Argo to measure OHC correctly. This talk will overview a proposed constellation of 66 Earth radiation budget instruments, hosted on Iridium satellites, that will actually be able to measure ERI to at least one significant digit, thus enabling a crucial test of climate models. This constellation will also be able to provide ERI at two-hourly time scales and 500-km spatial scales without extrapolations from uncalibrated narrowband geostationary instruments, using the highly successful methods of GRACE to obtain spatial resolution. This high time resolution would make ERI a synoptic variable like temperature, and allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes and even brief excursions of Total Solar Irradiance. Time permitting, we will also discuss the emerging view of clear vs. cloudy and its implications for the traditional ERB approach

    Single scattering from nonspherical Chebyshev particles: A compendium of calculations

    Get PDF
    A large set of exact calculations of the scattering from a class of nonspherical particles known as Chebyshev particles' has been performed. Phase function and degree of polarization in random orientation, and parallel and perpendicular intensities in fixed orientations, are plotted for a variety of particles shapes and sizes. The intention is to furnish a data base against which both experimental data, and the predictions of approximate methods, can be tested. The calculations are performed with the widely-used Extended Boundary Condition Method. An extensive discussion of this method is given, including much material that is not easily available elsewhere (especially the analysis of its convergence properties). An extensive review is also given of all extant methods for nonspherical scattering calculations, as well as of the available pool of experimental data

    On the Submillimeter Opacity of Protoplanetary Disks

    Full text link
    Solid particles with the composition of interstellar dust and power-law size distribution dn/da propto a^{-p} for a 3 lambda and 3 < p < 4 will have submm opacity spectral index beta(lambda) = dln(kappa)/dln(nu) approx (p-3) beta_{ism}, where beta_{ism} approx 1.7 is the opacity spectral index of interstellar dust material in the Rayleigh limit. For the power-law index p approx 3.5 that characterizes interstellar dust, and that appears likely for particles growing by agglomeration in protoplanetary disks, grain growth to sizes a > 3 mm will result in beta(1 mm) < ~1. Grain growth can naturally account for beta approx 1 observed for protoplanetary disks, provided that a_{max} > ~ 3 lambda.Comment: Submitted to ApJ. 17 pages, 6 figure

    Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 micrometer region

    Get PDF
    A method for detecting cirrus clouds in terms of brightness temperature differences between narrow bands at 8, 11, and 12 mu m has been proposed by Ackerman et al. (1990). In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria (1992), we have found that the brightness temperature differences between the 8 and 11 mu m bands for soils, rocks and minerals, and dry vegetation can vary between approximately -8 K and +8 K due solely to surface emissivity variations. We conclude that although the method of Ackerman et al. is useful for detecting cirrus clouds over areas covered by green vegetation, water, and ice, it is less effective for detecting cirrus clouds over areas covered by bare soils, rocks and minerals, and dry vegetation. In addition, we recommend that in future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles

    Observed Spectral Invariant Behavior of Zenith Radiance in the Transition Zone Between Cloud-Free and Cloudy Regions

    Get PDF
    The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets

    Horizontal Radiative Fluxes in Clouds at Absorbing Wavelengths

    Get PDF
    We discuss the effect of horizontal fluxes on the accuracy of a conventional plane-parallel radiative transfer calculation for a single pixel, known as the Independent Pixel Approximation (IPA) at absorbing wavelengths. Vertically integrated horizontal fluxes can be represented as a sum of three components; each component is the IPA accuracy on a pixel-by-pixel basis for reflectance, transmittance and absorptance, respectively. We show that IPA accuracy for reflectance always improves with more absorption, while the IPA accuracy for transmittance is less sensitive to the changes in absorption: with respect to the non-absorbing case, it may first deteriorate for weak absorption and then improve again for strongly absorbing wavelengths. EPA accuracy for absorptance always deteriorates with more absorption. As a result, vertically integrated horizontal fluxes, as a sum of IPA accuracies for reflectance, transmittance and absorptance, increase with more absorption. Finally, the question of correlations between horizontal fluxes, IPA uncertainties and radiative smoothing is addressed using wavenumber spectra of radiation fields reflected from or transmitted through fractal clouds

    Scattering by Interstellar Dust Grains. II. X-Rays

    Full text link
    Scattering and absorption of X-rays by interstellar dust is calculated for a model consisting of carbonaceous grains and amorphous silicate grains. The calculations employ realistic dielectric functions with structure near X-ray absorption edges, with resulting features in absorption, scattering, and extinction. Differential scattering cross sections are calculated for energies between 0.3 and 10 keV. The median scattering angle is given as a function of energy, and simple but accurate approximations are found for the X-ray scattering properties of the dust mixture, as well as for the angular distribution of the scattered X-ray halo for dust with simple spatial distributions. Observational estimates of the X-ray scattering optical depth are compared to model predictions. Observations of X-ray halos to test interstellar dust grain models are best carried out using extragalactic point sources.Comment: ApJ, accepted. 27 pages, 12 figures. Much of this material was previously presented in astro-ph/0304060v1,v2,v3 but has been separated into the present article following recommendation by the refere

    Calibration of radiation codes in climate models: Comparison of calculations with observations from the SPECtral Radiation Experiment (SPECTRE)

    Get PDF
    The primary goal of SPECTRE is to: close the loopholes by which longwave radiation models have eluded incisive comparisons with measurements. Likewise, the experimental approach was quite simple in concept, namely: accurately measure the zenith infrared radiance at high spectral resolution while simultaneously profiling the radiatively important atmospheric properties with conventional and remote sensing devices. The field phase of SPECTRE was carried out as part of FIRE Cirrus II, and detailed spectra of the down welling radiance were obtained by several interferometers simultaneous to the measurement of the optical properties of the atmosphere. We are now well along in the process of analyzing the data and calibrating radiation codes so that they may be used more effectively in climate related studies. The calibration is being done with models ranging from the most detailed (line-by-line) to the broad-band parameterizations used in climate models. This paper summarizes our progress in the calibration for clear-sky conditions. When this stage is completed, we will move on to the calibration for cirrus conditions
    corecore