Calibration of radiation codes in climate models: Comparison of calculations with observations from the SPECtral Radiation Experiment (SPECTRE)

Abstract

The primary goal of SPECTRE is to: close the loopholes by which longwave radiation models have eluded incisive comparisons with measurements. Likewise, the experimental approach was quite simple in concept, namely: accurately measure the zenith infrared radiance at high spectral resolution while simultaneously profiling the radiatively important atmospheric properties with conventional and remote sensing devices. The field phase of SPECTRE was carried out as part of FIRE Cirrus II, and detailed spectra of the down welling radiance were obtained by several interferometers simultaneous to the measurement of the optical properties of the atmosphere. We are now well along in the process of analyzing the data and calibrating radiation codes so that they may be used more effectively in climate related studies. The calibration is being done with models ranging from the most detailed (line-by-line) to the broad-band parameterizations used in climate models. This paper summarizes our progress in the calibration for clear-sky conditions. When this stage is completed, we will move on to the calibration for cirrus conditions

    Similar works