187 research outputs found

    Global action for training in malaria elimination

    Get PDF
    The Rethinking Malaria Leadership Forum, held at Harvard Business School in February 2017 with collaboration of the Barcelona Institute for Global Health and the Swiss Tropical and Public Health Institute, identified this training gap as a high priority for both analysis and action. The gap in human resource training for malaria elimination needs to be addressed in order to assure continued progress. This paper identifies major gaps in skills and human resources, suggests institutions that can assist in filling the training gaps, and proposes global actions to implement expanded training for malaria elimination in endemic countries

    Pre-amplification methods for tracking low-grade Plasmodium falciparum populations during scaled-up interventions in Southern Zambia

    Get PDF
    Background: Malaria is receding in many endemic countries with intervention scale -up against the disease. However, this resilient scourge may persist in low-grade submicroscopic infections among semi-immune members of the population, and be poised for possible resurgence, creating challenges for detection and assessment of intervention impact. Parasite genotyping methods, such as the molecular barcode, can identify specific malaria parasite types being transmitted and allow tracking and evaluation of parasite population structure changes as interventions are applied. This current study demonstrates application of pre-amplification methods for successful detection and genotyping of residual Plasmodium falciparum infections during a dramatic malarial decline. Methods: The study was a prospective cross-sectional design and based on a 2,000 sq km vicinity of Macha Mission Hospital in southern Zambia. Willing and predominantly asymptomatic residents of all ages were screened for malaria by microscopy during the 2005 and 2008 transmission seasons, with simultaneous collection of dried blood spots (DBS) on filter paper, and extraction of Plasmodium falciparum DNA was performed. Plasmodium falciparum infections were genotyped using a 24 SNP-based molecular barcode assay using real-time PCR. Submicroscopic parasitaemia samples were subjected to pre-amplification using TaqMan PreAmp Master Mix following the manufacturer’s instructions before SNP barcode analysis. Results: There was a dramatic decline of malaria between 2005 and 2008, and the geometric mean parasite density (95% CI) fell from 704/μL (390–1,271) in 2005 to 39/μL (23–68) in 2008, culminating in a large proportion of submicroscopic infections of which 90% failed to yield ample DNA for standard molecular characterization among 2008 samples. Pre-amplification enabled successful detection and genotyping of 74% of these low-grade reservoir infections, overall, compared to 54% that were detectable before pre-amplification (p <0.0005, n = 84). Furthermore, nine samples negative for parasites by microscopy and standard quantitative PCR amplification were positive after pre-amplification. Conclusions: Pre-amplification allows analysis of an otherwise undetectable parasite population and may be instrumental for parasites identification, tracking and assessing the impact of interventions on parasite populations during malaria control and elimination programmes when parasitaemia is expected to decline to submicroscopic levels

    A High-Throughput Screen Targeting Malaria Transmission Stages Opens New Avenues for Drug Development

    Get PDF
    A major goal of the worldwide malaria eradication program is the reduction and eventual elimination of malaria transmission. All currently available antimalarial compounds were discovered on the basis of their activity against the asexually reproducing red blood cell stages of the parasite, which are responsible for the morbidity and mortality of human malaria. Resistance against these compounds is widespread, and there is an urgent need for novel approaches to reduce the emergence of resistance to new antimalarials as they are introduced. We have established and validated the first high-throughput assay targeting the red blood cell parasite stage required for transmission, the sexually reproducing gametocyte. This assay will permit identification of compounds specifically targeting the transmission stages in addition to the asexual stage parasites. Such stage-specific compounds may be used in a combination therapy, reducing the emergence of resistance by blocking transmission of resistant parasites that may be selected in a patient

    RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum

    Get PDF
    The recent identification of antisense RNA in the transcriptomes of many eukaryotes has generated enormous interest. The presence of antisense RNA in Plasmodium falciparum, the causative agent of severe malaria, remains controversial. Elucidation of the mechanism of antisense RNA in P. falciparum synthesis is critical in order to demonstrate the origin and function of these transcripts. Therefore, a systematic analysis of antisense and sense RNA synthesis was performed using direct labeling experiments. Nuclear run on experiments with single-stranded DNA probes demonstrated that antisense RNA is synthesized in the nucleus at several genomic loci. Antisense RNA synthesis is sensitive to the potent RNA polymerase II inhibitor α-amanitin. Antisense and sense transcription was also detected in nuclei isolated from synchronized parasites, suggesting concurrent synthesis. In summary, our experiments directly demonstrate that antisense RNA synthesis is a common transcriptional phenomenon in P. falciparum, and is catalyzed by RNA polymerase II. Copyright © 2005 RNA Society

    Plasmodium falciparum gene expression measured directly from tissue during human infection

    Get PDF
    Background: During the latter half of the natural 48-h intraerythrocytic life cycle of human Plasmodium falciparum infection, parasites sequester deep in endothelium of tissues, away from the spleen and inaccessible to peripheral blood. These late-stage parasites may cause tissue damage and likely contribute to clinical disease, and a more complete understanding of their biology is needed. Because these life cycle stages are not easily sampled due to deep tissue sequestration, measuring in vivo gene expression of parasites in the trophozoite and schizont stages has been a challenge. Methods: We developed a custom nCounter® gene expression platform and used this platform to measure malaria parasite gene expression profiles in vitro and in vivo. We also used imputation to generate global transcriptional profiles and assessed differential gene expression between parasites growing in vitro and those recovered from malaria-infected patient tissues collected at autopsy. Results: We demonstrate, for the first time, global transcriptional expression profiles from in vivo malaria parasites sequestered in human tissues. We found that parasite physiology can be correlated with in vitro data from an existing life cycle data set, and that parasites in sequestered tissues show an expected schizont-like transcriptional profile, which is conserved across tissues from the same patient. Imputation based on 60 landmark genes generated global transcriptional profiles that were highly correlated with genome-wide expression patterns from the same samples measured by microarray. Finally, differential expression revealed a limited set of in vivo upregulated transcripts, which may indicate unique parasite genes involved in human clinical infections. Conclusions: Our study highlights the utility of a custom nCounter® P. falciparum probe set, validation of imputation within Plasmodium species, and documentation of in vivo schizont-stage expression patterns from human tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0110-6) contains supplementary material, which is available to authorized users

    Altered drug susceptibility during host adaptation of a <i>Plasmodium falciparum</i> strain in a non-human primate model

    Get PDF
    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model
    corecore