54 research outputs found
Recommended from our members
Dislocation-Radiation Obstacle Interactions: Developing Improved Mechanical Property Constitutive Models
Radiation damage to structural and cladding materials, including austenitic stainless steels, ferritic steels, and zirconium alloys, in nuclear reactor environments results in significant mechanical property degradation, including yield strength increases, severe ductility losses and flow localization, which impacts reliability and performance. Generation IV and advanced fuel cycle concepts under consideration will require the development of advanced structural materials, which will operate in increasingly hostile environments. The development of predictive models is required to assess the performance and response of materials in extreme Gen IV reactor operating conditions (temperature, stress, and pressure), to decrease the time to rapidly assess the properties of new materials and insert them into technological applications (Gen IV and Advanced Fuel Cycle Operations)
Single Crystal Growth of Ga2(SexTe1-x)3 Semiconductors and Defect Studies via Positron Annihilation Spectroscopy
Small single crystals of Ga2(SexTe1-x)3 semiconductors, for x = 0.1, 0.2,
0.3, were obtained via modified Bridgman growth techniques. High-resolution
powder x-ray diffractometry confirms a zincblende cubic structure, with
additional satellite peaks observed near the (111) Bragg line. This suggests
the presence of ordered vacancy planes along the [111] direction that have been
previously observed in Ga2Te3. Defect studies via positron annihilation
spectroscopy show an average positron lifetime of ~400 ps in bulk as-grown
specimens. Such a large lifetime suggests that the positron annihilation sites
in these materials are dominated by defects. Moreover, analyzing the electron
momenta via coincidence Doppler broadening measurements suggests a strong
presence of large open-volume defects, likely to be vacancy clusters or voids.Comment: 4 pages, 5 figure
Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars
Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model
incorporating thermal fluctuations and dipole-dipole interactions (calculated
by the Fast Multipole Method) are presented for systems composed of nanoscale
iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated
under sinusoidally varying fields are obtained, while the coercive field is
estimated to be 1979 14 Oe using linear field sweeps at T=0 K. Thermal
effects are essential to the relaxation of magnetization trapped in a
metastable orientation, such as happens after a rapid reversal of an external
magnetic field less than the coercive value. The distribution of switching
times is compared to a simple analytic theory that describes reversal with
nucleation at the ends of the nanomagnets. Results are also presented for
arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a
separation of 300 nm, where the field from neighboring pillars is only 1
Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of
numerical technique
Perspectives on multiscale modelling and experiments to accelerate materials development for fusion
Prediction of material performance in fusion reactor environments relies on computational modelling, and will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt to replicate some aspects of the eventual operational conditions. In 2019, a group of leading experts met under the umbrella of the IEA to discuss the current position and ongoing challenges in modelling of fusion materials and how advanced experimental characterisation is aiding model improvement. This review draws from the discussions held during that workshop. Topics covering modelling of irradiation-induced defect production and fundamental properties, gas behaviour, clustering and segregation, defect evolution and interactions are discussed, as well as new and novel multiscale simulation approaches, and the latest efforts to link modelling to experiments through advanced observation and characterisation techniques.MRG, SLD, and DRM acknowledge funding by the RCUK Energy Programme [grant number EP/T012250/1]. Part of this work has been carried out within the framework of the EUROFusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. JRT acknowledges funding from the US Department of Energy (DOE) through grant DE-SC0017899. ZB, LY,BDW, and SJZ acknowledge funding through the US DOE Fusion Energy Sciences grant DE-SC0006661ZB, LY and BDW also were partially supported from the US DOE Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions. JMa acknowledges support from the US-DOEs Office of Fusion Energy Sciences (US-DOE), project DE-SC0019157. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy (DOE) under contract DE-AC05-76RL01830. YO and YZ were supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under contract number DE-AC05-00OR22725. TS and TT are supported by JSPS KAKENHI Grant Number 19K05338
Recommended from our members
Modeling and Computer Simulation: Molecular Dynamics and Kinetic Monte Carlo
Recent years have witnessed tremendous advances in the realistic multiscale simulation of complex physical phenomena, such as irradiation and aging effects of materials, made possible by the enormous progress achieved in computational physics for calculating reliable, yet tractable interatomic potentials and the vast improvements in computational power and parallel computing. As a result, computational materials science is emerging as an important complement to theory and experiment to provide fundamental materials science insight. This article describes the atomistic modeling techniques of molecular dynamics (MD) and kinetic Monte Carlo (KMC), and an example of their application to radiation damage production and accumulation in metals. It is important to note at the outset that the primary objective of atomistic computer simulation should be obtaining physical insight into atomic-level processes. Classical molecular dynamics is a powerful method for obtaining insight about the dynamics of physical processes that occur on relatively short time scales. Current computational capability allows treatment of atomic systems containing as many as 10{sup 9} atoms for times on the order of 100 ns (10{sup -7}s). The main limitation of classical MD simulation is the relatively short times accessible. Kinetic Monte Carlo provides the ability to reach macroscopic times by modeling diffusional processes and time-scales rather than individual atomic vibrations. Coupling MD and KMC has developed into a powerful, multiscale tool for the simulation of radiation damage in metals
Effect of bulk oxygen on 14YWT nanostructured ferritic alloys
International audienc
- …