103 research outputs found

    Monogenic Epilepsies: Disease Mechanisms, Clinical Phenotypes, and Targeted Therapies

    Get PDF
    A monogenic aetiology can be identified in up to 40% of people with severe epilepsy. To address earlier and more appropriate treatment strategies, clinicians are required to know the implications that specific genetic causes might have on pathophysiology, natural history, comorbidities and treatment choices. In this narrative review, we summarise concepts on the genetic epilepsies based on the underlying pathophysiological mechanisms and present the current knowledge on treatment options based on evidence provided by controlled trials or studies with lower classification of evidence. Overall, evidence robust enough to guide antiseizure medication (ASM) choices in genetic epilepsies remains limited to the more frequent conditions for which controlled trials and observational studies have been possible. Most monogenic disorders are very rare and ASM choices for them are still based on inferences drawn from observational studies and early, often anecdotal, experiences with precision therapies. Precision medicine remains applicable to only a narrow number of patients with monogenic epilepsies and may target only part of the actual functional defects. Phenotypic heterogeneity is remarkable, and some genetic mutations activate epileptogenesis through their developmental effects, which may not be reversed postnatally. Other genes seem to have pure functional consequences on excitability, acting through either loss- or gain-of-function effects, and these may have opposite treatment implications. In addition, the functional consequences of missense mutations may be difficult to predict, making precision treatment approaches considerably more complex than estimated by deterministic interpretations. Knowledge of genetic aetiologies can influence the approach to surgical treatment of focal epilepsies. Identification of germline mutations in specific genes contraindicates surgery while mutations in other genes do not. Identification, quantification and functional characterization of specific somatic mutations before surgery using cerebrospinal fluid liquid biopsy or after surgery in brain specimens, will likely be integrated in planning surgical strategies and re-intervention after a first unsuccessful surgery as initial evidence suggests that mutational load may correlate with the epileptogenic zone. Promising future directions include gene manipulation by DNA or mRNA targeting; although most are still far from clinical use, some are in early phase clinical development

    Limited effect of chronic valproic acid treatment in a mouse model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeuticsPM received funding from Ataxia UK Grant (Project: Pharmacologic therapy for Machado-Joseph disease: from a C. elegans drug screen to a mouse model validation). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Recommendations for the design of therapeutic trials for neonatal seizures

    Get PDF
    Although seizures have a higher incidence in neonates than any other age group and are associated with significant mortality and neurodevelopmental disability, treatment is largely guided by physician preference and tradition, due to a lack of data from welldesigned clinical trials. There is increasing interest in conducting trials of novel drugs to treat neonatal seizures, but the unique characteristics of this disorder and patient population require special consideration with regard to trial design. The Critical Path Institute formed a global working group of experts and key stakeholders from academia, the pharmaceutical industry, regulatory agencies, neonatal nurse associations, and patient advocacy groups to develop consensus recommendations for design of clinical trials to treat neonatal seizures. The broad expertise and perspectives of this group were invaluable in developing recommendations addressing: (1) use of neonate-specific adaptive trial designs, (2) inclusion/exclusion criteria, (3) stratification and randomization, (4) statistical analysis, (5) safety monitoring, and (6) definitions of important outcomes. The guidelines are based on available literature and expert consensus, pharmacokinetic analyses, ethical considerations, and parental concerns. These recommendations will ultimately facilitate development of a Master Protocol and design of efficient and successful drug trials to improve the treatment and outcome for this highly vulnerable population

    The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway

    Get PDF
    Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures

    Specific safety and tolerability considerations in the use of anticonvulsant medications in children

    No full text
    Amy Z Crepeau,1 Brian D Moseley,2 Elaine C Wirrell31Division of Epilepsy, Department of Neurology, Mayo Clinic, 2Department of Neurology, Mayo Clinic, 3Divisions of Epilepsy and Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USAAbstract: Epilepsy is one of the most common neurological disorders in the pediatric age range, and the majority of affected children can be safely and effectively treated with antiepileptic medication. While there are many antiepileptic agents on the market, specific drugs may be more efficacious for certain seizure types or electroclinical syndromes. Furthermore, certain adverse effects are more common with specific classes of medication. Additionally patient-specific factors, such as age, race, other medical conditions, or concurrent medication use may result in higher rates of side effects or altered efficacy. Significant developmental changes in gastric absorption, protein binding, hepatic metabolism, and renal clearance are seen over the pediatric age range, which impact pharmacokinetics. Such changes must be considered to determine optimal dosing and dosing intervals for children at specific ages. Furthermore, approximately one third of children require polytherapy for seizure control, and many more take concurrent medications for other conditions. In such children, drug–drug interactions must be considered to minimize adverse effects and improve efficacy. This review will address issues of antiepileptic drug efficacy, tolerability and ease of use, pharmacokinetics, and drug–drug interactions in the pediatric age range.Keywords: antiepileptic drugs, drug–drug interactions, pharmacokinetic
    corecore