43 research outputs found

    Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data

    Get PDF
    Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner's-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner's curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25-50% increase in the prediction R2) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner's curse correction improved prediction R2 from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R2 to 3.53% (P = 2×10-5). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure

    Corneal Transplant Follow-up Study II: a randomised trial to determine whether HLA class II matching reduces the risk of allograft rejection in penetrating keratoplasty

    No full text
    PURPOSE: A randomised trial to test the hypothesis that human leucocyte antigen (HLA) class II matching reduces the risk of allograft rejection in high-risk penetrating keratoplasty (PK). METHODS: All transplants were matched for HLA class I antigens (≤2 mismatches at the A and B loci) and corneas were allocated to patients by cohort minimisation to achieve 0, 1 or 2 HLA class II antigen mismatches. The corneal transplants (n=1133) were followed for 5 years. The primary outcome measure was time to first rejection episode. RESULTS: Cox regression analysis found no influence of HLA class II mismatching on risk of immunological rejection (HR 1.13; 95% CI 0.79 to 1.63; p=0.51). The risk of rejection in recipients older than 60 years was halved compared with recipients ≤40 years (HR 0.51; 95% CI 0.36 to 0.73; p=0.0003). Rejection was also more likely where cataract surgery had been performed after PK (HR 3.68; 95% CI 1.95 to 6.93; p<0.0001). In univariate analyses, preoperative factors including chronic glaucoma (p=0.02), vascularisation (p=0.01), inflammation (p=0.03), ocular surface disease (p=0.0007) and regrafts (p<0.001) all increased the risk of rejection. In the Cox model, however, none of these factors was individually significant but rejection was more likely where≥2 preoperative risk factors were present (HR 2.11; 95% CI 1.26 to 3.47; p<0.003). CONCLUSIONS: HLA class II matching, against a background of HLA class I matching, did not reduce the risk of allograft rejection. Younger recipient age, the presence of ≥2 preoperative risk factors and cataract surgery after PK all markedly increased the risk of allograft rejection. TRIAL REGISTRATION NUMBER: ISRCTN25094892

    Characterization of genetically modified human retinal pigment epithelial cells developed for in vitro and transplantation studies.

    No full text
    PURPOSE: To develop, by specific genetic modification, a differentiated human retinal pigment epithelial (RPE) cell line with an extended life span that can be used for investigating their function in vitro and for in vivo transplantation studies. METHODS: Primary human RPE cells were genetically modified by transfecting with a plasmid encoding the simian virus (SV)40 large T antigen. After characterization, two cell lines, designated h1RPE-7 and h1RPE-116, were chosen for further investigation, along with the spontaneously derived RPE cell line ARPE-19. Factors reported to be important in RPE and photoreceptor cell function and survival in vivo were examined. RESULTS: Both h1RPE-7 and h1RPE-116 cells exhibited epithelial morphology, expressed cytokeratins, and displayed junctional distribution of ZO-1, p100-p120 and beta-catenin. The cells expressed mRNA for RPE65 and cellular retinaldehyde-binding protein (CRALBP) and the trophic and growth factors brain-derived neurotropic factor (BDNF), ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF), pigment epithelium-derived factor (PEDF), nerve growth factor (NGF), platelet-derived growth factor (PDGF)-alpha, insulin-like growth factor (IGF)-1, and vascular endothelial growth factor (VEGF). Secreted BDNF, bFGF, and VEGF, but not CNTF, were identified in cell supernatants. The cell lines constitutively expressed HLA-ABC, CD54, CD58, and CD59. After activation with IFN-gamma both HLA-ABC and CD54 were upregulated, and the expression of HLA-DR was induced. Both cell lines failed to express CD80, CD86, CD40, or CD48 in vitro and in a mixed lymphocyte reaction were unable to induce T-cell proliferation. Fas ligand (CD95L) was not detected in vitro by RT-PCR. Similar results were obtained with the ARPE-19 cell line. CONCLUSIONS: RPE lines h1RPE-7 and h1RPE-116 retain many of the morphologic and biochemical characteristics of RPE cells in vivo and may serve as a source of cells for in vitro analysis of RPE cell function, as well as for orthotopic transplantation studies

    Recent Arctic amplification and extreme mid-latitude weather

    Get PDF
    The Arctic region has warmed more than twice as fast as the global average — a phenomenon known as Arctic amplification. The rapid Arctic warming has contributed to dramatic melting of Arctic sea ice and spring snow cover, at a pace greater than that simulated by climate models. These profound changes to the Arctic system have coincided with a period of ostensibly more frequent extreme weather events across the Northern Hemisphere mid-latitudes, including severe winters. The possibility of a link between Arctic change and mid-latitude weather has spurred research activities that reveal three potential dynamical pathways linking Arctic amplification to mid-latitude weather: changes in storm tracks, the jet stream, and planetary waves and their associated energy propagation. Through changes in these key atmospheric features, it is possible, in principle, for sea ice and snow cover to jointly influence mid-latitude weather. However, because of incomplete knowledge of how high-latitude climate change influences these phenomena, combined with sparse and short data records, and imperfect models, large uncertainties regarding the magnitude of such an influence remain. We conclude that improved process understanding, sustained and additional Arctic observations, and better coordinated modelling studies will be needed to advance our understanding of the influences on mid-latitude weather and extreme events

    Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures

    No full text
    In the present study, we evaluated polyethylenimine (PEI) of different molecular weights (MWs) as a DNA complexing agent for its efficiency in transfecting nondifferentiated COS-1 (green monkey fibroblasts) and well-differentiated human submucosal airway epithelial cells (Calu-3). Studying the effect of particle size, zeta potential, presence of serum proteins or chloroquine, it appeared that transfection efficiency depends on the experimental conditions and not on the MW of the PEI used. Comparing transfection efficiencies in both cell lines, we found that PEI was 3 orders of magnitude more effective in COS-1 than in Calu-3 cells, because Calu-3 cells are differentiated and secrete mucins, which impose an additional barrier to gene delivery. Transfection efficiency was strongly correlated to PEI cytotoxicity. Also, some evidence for PEI-induced apoptosis in both cell lines was found. In conclusion, our results indicate that PEI is a useful vector for nonviral transfection in undifferentiated cell lines. However, results from studies in differentiated bronchial epithelial cells suggest that PEI has yet to be optimized for successful gene therapy of cystic fibrosis (CF)
    corecore