971 research outputs found

    Medical Data Architecture Platform and Recommended Requirements for a Medical Data System for Exploration Missions

    Get PDF
    The Medical Data Architecture (MDA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically- relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm of medical data management on the International Space Station. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products derived from the third MDA prototype development will directly inform exploration medical system requirements for Level of Care IV in Gateway missions. In fiscal year 2019, the MDA project developed Test Bed 3, the third iteration in a series of prototypes, that featured integrations with cognition tool data, ultrasound image analytics and core Flight Software (cFS). Maintaining a layered architecture design, the framework implemented a plug-in, modular approach in the integration of these external data sources. An early version of MDA Test Bed 3 software was deployed and operated in a simulated analog environment that was part of the Next Space Technologies for Exploration Partnerships (NextSTEP) Gateway tests of multiple habitat prototypes. In addition, the MDA team participated in the Gateway Test and Verification Demonstration, where the MDA cFS applications was integrated with Gateway-in-a-Box software to send and receive medically relevant data over a simulated vehicle network. This software demonstration was given to ExMC and Gateway Program stakeholders at the NASA Johnson Space Center Integrated Power, Avionics and Software (iPAS) facility. Also, the integrated prototypes served as a vehicle to provide Level 5 requirements for the Crew Health and Performance Habitat Data System for Gateway Missions (Medical Level of Care IV). In the upcoming fiscal year, the MDA project will continue to provide systems engineering and vertical prototypes to refine requirements for medical Level of Care IV and inform requirements for Level of Care V

    Medical Data Architecture Platform and Recommended Requirements for A Medical Data System for Exploration Missions

    Get PDF
    Minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the ExMC MDA project addresses the technical limitations identified in ExMC Gap Med 07: We do not have the capability to comprehensively process medically relevant information to support medical operations during exploration missions. This gap identifies that the current in-flight medical data management includes a combination of data collection and distribution methods that are minimally integrated with on-board medical devices and systems. Furthermore, there are a variety of data sources and methods of data collection. For an exploration mission, the seamless management of such data will enable a more medically autonomous crew than the current paradigm of medical data management on the International Space Station. ExMC has recognized that in order to make informed decisions about a medical data architecture framework, current methods for medical data management must not only be understood, but an architecture must also be identified that provides the crew with actionable insight to medical conditions. This medical data architecture will provide the necessary functionality to address the challenges of executing a self-contained medical system that approaches crew health care delivery without assistance from ground support. Hence, the products derived from the third MDA prototype development will directly inform exploration medical system requirements for Level of Care IV in Gateway missions.In fiscal year 2019, the MDA project developed Test Bed 3, the third iteration in a series of prototypes, that featured integrations with cognition tool data, ultrasound image analytics and core Flight Software (cFS). Maintaining a layered architecture design, the framework implemented a plug-in, modular approach in the integration of these external data sources. An early version of MDA Test Bed 3 software was deployed and operated in a simulated analog environment that was part of the Next Space Technologies for Exploration Partnerships (NextSTEP) Gateway tests of multiple habitat prototypes. In addition, the MDA team participated in the Gateway Test and Verification Demonstration, where the MDA cFS applications was integrated with Gateway-in-a-Box software to send and receive medically relevant data over a simulated vehicle network. This software demonstration was given to ExMC and Gateway Program stakeholders at the NASA Johnson Space Center Integrated Power, Avionics and Software (iPAS) facility. Also, the integrated prototypes served as a vehicle to provide Level 5 requirements for the Crew Health and Performance Habitat Data System for Gateway Missions (Medical Level of Care IV). In the upcoming fiscal year, the MDA project will continue to provide systems engineering and vertical prototypes to refine requirements for medical Level of Care IV and inform requirements for Level of Care V

    Regulation of glycolysis in brown adipocytes by HIF-1α

    Get PDF
    Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also induced after β-adrenergic activation of cultured brown adipocytes, concomitant with accumulation of hypoxia inducible factor-1α (HIF-1α) protein levels. HIF-1α accumulation was dependent on uncoupling protein 1 and generation of mitochondrial reactive oxygen species. Expression of key glycolytic enzymes was reduced after knockdown of HIF-1α in mature brown adipocytes. Glucose consumption, lactate export and glycolytic capacity were reduced in brown adipocytes depleted of Hif-1α. Finally, we observed a decreased β-adrenergically induced oxygen consumption in Hif-1α knockdown adipocytes cultured in medium with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes.ISSN:2045-232

    Asymptotic normalization coefficients (nuclear vertex constants) for p+7Be→8Bp+^7Be\to ^8B and the direct 7Be(p,γ)8B^7Be(p,\gamma)^8B astrophysical S-factors at solar energies

    Full text link
    A new analysis of the precise experimental astrophysical S-factors for the direct capture 7Be(p,γ)^7Be(p,\gamma) 8B^8B reaction [A.J.Junghans et al.Phys.Rev. C 68 (2003) 065803 and L.T. Baby et al. Phys.Rev. C 67 (2003) 065805] is carried out based on the modified two - body potential approach in which the direct astrophysical S-factor, S17(E) {\rm S_{17}(E)}, is expressed in terms of the asymptotic normalization constants for p+7Be→8Bp+^7Be\to ^8B and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods-Saxon potential form is used for the bound (p+7Bep+^7Be)- state wave function and for the p7Bep^7Be- scattering wave function. New estimates are obtained for the ^{\glqq}indirectly measured\grqq values of the asymptotic normalization constants (the nuclear vertex constants) for the p+7Be→8Bp+^7Be\to ^8B and S17(E)S_{17}(E) at E≤\le 115 keV, including EE=0. These values of S17(E)S_{17}(E) and asymptotic normalization constants have been used for getting information about the ^{\glqq}indirectly measured\grqq values of the ss wave average scattering length and the pp wave effective range parameters for p7Bep^7Be- scattering.Comment: 27 pages, 6 figure

    Factors Associated With Engagement With a Web-Based Lifestyle Intervention Following Provision of Coronary Heart Disease Risk: Mixed Methods Study

    Get PDF
    Background: Web-based interventions provide the opportunity to combine the tailored approach of face-to-face interventions with the scalability and cost-effectiveness of public health interventions. This potential is often limited by low engagement. A number of studies have described the characteristics of individuals who engage more in Web-based interventions but few have explored the reasons for these variations. Objective: We aimed to explore individual-level factors associated with different degrees of engagement with a Web-based behavior change intervention following provision of coronary heart disease (CHD) risk information, and the barriers and facilitators to engagement. Methods: This study involved the secondary analysis of data from the Information and Risk Modification Trial, a randomized controlled trial of a Web-based lifestyle intervention alone, or alongside information on estimated CHD risk. The intervention consisted of three interactive sessions, each lasting up to 60 minutes, delivered at monthly intervals. Participants were characterized as high engagers if they completed all three sessions. Thematic analysis of qualitative data from interviews with 37 participants was combined with quantitative data on usage of the Web-based intervention using a mixed-methods matrix, and data on the views of the intervention itself were analyzed across all participants. Results: Thirteen participants were characterized as low engagers and 24 as high engagers. There was no difference in age (P=.75), gender (P=.95), or level of risk (P=.65) between the groups. Low engagement was more often associated with: (1) reporting a negative emotional reaction in response to the risk score (P=.029), (2) perceiving that the intervention did not provide any new lifestyle information (P=.011), and (3) being less likely to have reported feeling an obligation to complete the intervention as part of the study (P=.019). The mixed-methods matrix suggested that there was also an association between low engagement and less success with previous behavior change attempts, but the statistical evidence for this association was weak (P=.16). No associations were seen between engagement and barriers or facilitators to health behavior change, or comments about the design of the intervention itself. The most commonly cited barriers related to issues with access to the intervention itself: either difficulties remembering the link to the site or passwords, a perceived lack of flexibility within the website, or lack of time. Facilitators included the nonjudgmental presentation of lifestyle information, the use of simple language, and the personalized nature of the intervention. Conclusions: This study shows that the level of engagement with a Web-based intervention following provision of CHD risk information is not influenced by the level of risk but by the individual’s response to the risk information, their past experiences of behavior change, the extent to which they consider the lifestyle information helpful, and whether they felt obliged to complete the intervention as part of a research study. A number of facilitators and barriers to Web-based interventions were also identified, which should inform future interventions.The INFORM study was funded by European Commission Framework 7 EPIC-CVD Grant agreement (No. 279233). NHS Blood and Transplant funded the INTERVAL trial. Deoxyribonucleic acid extraction and genotyping in INTERVAL/INFORM was funded by the United Kingdom National Institute of Health Research. The coordinating team for INTERVAL/INFORM at the Cardiovascular Epidemiology Unit of the University of Cambridge was supported by core funding from: United Kingdom Medical Research Council (G0800270), British Heart Foundation (SP/09/002), British Heart Foundation Cambridge Cardiovascular Centre of Excellence, and United Kingdom National Institute for Health Research Cambridge Biomedical Research Centre. JUS was funded by a National Institute for Health Clinical Lectureship and BS was supported by the Medical Research Council (MC_UU_12015/4)

    Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    Get PDF
    BACKGROUND: Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. RESULTS: The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. CONCLUSIONS: UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA

    Anharmonicities of giant dipole excitations

    Get PDF
    The role of anharmonic effects on the excitation of the double giant dipole resonance is investigated in a simple macroscopic model.Perturbation theory is used to find energies and wave functions of the anharmonic ascillator.The cross sections for the electromagnetic excitation of the one- and two-phonon giant dipole resonances in energetic heavy-ion collisions are then evaluated through a semiclassical coupled-channel calculation.It is argued that the variations of the strength of the anharmonic potential should be combined with appropriate changes in the oscillator frequency,in order to keep the giant dipole resonance energy consistent with the experimental value.When this is taken into account,the effects of anharmonicities on the double giant dipole resonance excitation probabilities are small and cannot account for the well-known discrepancy between theory and experiment

    Role of the Nuclear and Electromagnetic Interactions in the Coherent Dissociation of the Relativistic 7^7Li Nucleus into the 3^3H + 4^4He Channel

    Full text link
    The differential cross section in the transverse momentum QQ and a total cross section of (31±4)(31\pm4) mb for the coherent dissociation of a 3-A-GeV/cc 7^7Li nucleus through the 3^3H+4+^4He channel have been measured on emulsion nuclei. The observed QQ dependence of the cross section is explained by the predominant supposition of the nuclear diffraction patterns on light (C, N, O) and heavy (Br, Ag) emulsion nuclei. The contributions to the cross section from nuclear diffraction (Q≤400Q\le400 MeV/cc) and Coulomb (Q≤50(Q\le50 MeV/cc) dissociations are calculated to be 40.7 and 4 mb, respectively.Comment: ISSN 0021-3640, Pleiades Publishing, Ltd., 200

    Comparison of exact and approximate cross-sections in relativistic Coulomb excitation

    Full text link
    We present a new method of obtaining time-dependent matrix elements of the electromagnetic pulse produced by a highly-relativistic projectile. These matrix elements are used in a coupled-channel calculation to predict the cross-sections for population of 1- and 2-phonon states of the giant dipole resonance. Comparisons are made with the predictions of the long-wavelength and Born approximations.Comment: 26 pages, LaTex2
    • …
    corecore