51 research outputs found

    Observation of the hyperfine transition in lithium-like Bismuth 209Bi80+^{209}\text{Bi}^{80+}: Towards a test of QED in strong magnetic fields

    Full text link
    We performed a laser spectroscopic determination of the 2s2s hyperfine splitting (HFS) of Li-like 209Bi80+^{209}\text{Bi}^{80+} and repeated the measurement of the 1s1s HFS of H-like 209Bi82+^{209}\text{Bi}^{82+}. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of ≈0.71 c\approx 0.71\,c. Pulsed laser excitation of the M1M1 hyperfine-transition was performed in anticollinear and collinear geometry for Bi82+\text{Bi}^{82+} and Bi80+\text{Bi}^{80+}, respectively, and observed by fluorescence detection. We obtain ΔE(1s)=5086.3(11) meV\Delta E^{(1s)}= 5086.3(11)\,\textrm{meV} for Bi82+\text{Bi}^{82+}, different from the literature value, and ΔE(2s)=797.50(18) meV\Delta E^{(2s)}= 797.50(18)\,\textrm{meV} for Bi80+\text{Bi}^{80+}. These values provide experimental evidence that a specific difference between the two splitting energies can be used to test QED calculations in the strongest static magnetic fields available in the laboratory independent of nuclear structure effects. The experimental result is in excellent agreement with the theoretical prediction and confirms the sum of the Dirac term and the relativistic interelectronic-interaction correction at a level of 0.5% confirming the importance of accounting for the Breit interaction.Comment: 5 pages, 2 figure

    First Measurement of the 96^{96}Ru(p,γ\gamma)97^{97}Rh Cross Section for the p-Process with a Storage Ring

    Get PDF
    This work presents a direct measurement of the 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section via a novel technique using a storage ring, which opens opportunities for reaction measurements on unstable nuclei. A proof-of-principle experiment was performed at the storage ring ESR at GSI in Darmstadt, where circulating 96^{96}Ru ions interacted repeatedly with a hydrogen target. The 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section between 9 and 11 MeV has been determined using two independent normalization methods. As key ingredients in Hauser-Feshbach calculations, the γ\gamma-ray strength function as well as the level density model can be pinned down with the measured (p,γp, \gamma) cross section. Furthermore, the proton optical potential can be optimized after the uncertainties from the γ\gamma-ray strength function and the level density have been removed. As a result, a constrained 96^{96}Ru(p,γp, \gamma)97^{97}Rh reaction rate over a wide temperature range is recommended for pp-process network calculations.Comment: 10 pages, 7 figs, Accepted for publication at PR

    Measurements of proton-induced reactions on ruthenium-96 in the ESR at GSI

    Get PDF
    8th International Conference on Nuclear Physics at Storage Rings Stori11, October 9-14, 2011 Laboratori Nazionale di Frascati, Italy. Storage rings offer the possibility of measuring proton- and alpha-induced reactions in inverse kinematics. The combination of this approachwith a radioactive beamfacility allows, in principle, the determination of the respective cross sections for radioactive isotopes. Such data are highly desired for a better understanding of astrophysical nucleosynthesis processes like the p-process. A pioneering experiment has been performed at the Experimental Storage Ring (ESR) at GSI using a stable 96Ru beam at 9-11 AMeV and a hydrogen target. Monte-Carlo simulations of the experiment were made using the Geant4 code. In these simulations, the experimental setup is described in detail and all reaction channels can be investigated. Based on the Geant4 simulations, a prediction of the shape of different spectral components can be performed. A comparison of simulated predictions with the experimental results shows a good agreement and allows the extraction of the cross section

    XUV Fluorescence Detection of Laser-Cooled Stored Relativistic Ions

    Get PDF
    An improved moveable in vacuo XUV fluorescence detection system was employed for the laser cooling of bunched relativistic ( β = 0.47) carbon ions at the Experimental Storage Ring (ESR) of GSI Helmholtzzentrum Darmstadt, Germany. Strongly Doppler boosted XUV fluorescence (∼90 nm) was emitted from the ions in a forward light cone after laser excitation of the 2s–2p transition (∼155 nm) by a new tunable pulsed UV laser system (257 nm). It was shown that the detected fluorescence strongly depends on the position of the detector around the bunched ion beam and on the delay (∼ns) between the ion bunches and the laser pulses. In addition, the fluorescence information could be directly combined with the revolution frequencies of the ions (and their longitudinal momentum spread), which were recorded using the Schottky resonator at the ESR. These fluorescence detection features are required for future laser cooling experiments at highly relativistic energies (up to γ ∼ 13) and high intensities (up to 10 11 particles) of ion beams in the new heavy ion synchrotron SIS100 at FAIR

    Polarization transfer in ion-surface scattering

    No full text
    +106hlm.;24c
    • …
    corecore