233 research outputs found

    Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P

    Get PDF
    Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important in this region. NNW had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (\u3c2 km) evenly divided between sea salts, non-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (\u3c2 km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates from Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust. Low-altitude Channel exhibits the highest condensation nuclei (CN) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2–7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (≥65%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo in SE Asia reflects enhanced soot

    Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    Get PDF
    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300– 700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation

    Observational evidence for the convective transport of dust over the central United States

    Get PDF
    Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (\u3c5 km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude \u3e 9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm \u3c diameter \u3c 5 µm) aerosol volume (Vc) were comparable to mean inflow values as demonstrated by average outflow/inflow ratios greater than 0.5. A positive relationship between Ca2+, Vc, ice water content, and large (diameter \u3e 50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm \u3c diameter \u3c 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15–300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ

    A comparison of similar aerosol measurements made on the NASA P3-B, DC-8, and NSF C-130 aircraft during TRACE-P and ACE-Asia

    Get PDF
    Two major aircraft experiments occurred off the Pacific coast of Asia during spring 2001: the NASA sponsored Transport and Chemical Evolution over the Pacific (TRACE-P) and the National Science Foundation (NSF) sponsored Aerosol Characterization Experiment-Asia (ACE-Asia). Both experiments studied emissions from the Asian continent (biomass burning, urban/industrial pollution, and dust). TRACE-P focused on trace gases and aerosol during March/April and was based primarily in Hong Kong and Yokota Air Force Base, Japan, and involved two aircraft: the NASA DC-8 and the NASA P3-B. ACE-Asia focused on aerosol and radiation during April/May and was based in Iwakuni Marine Corps Air Station, Japan, and involved the NSF C-130. This paper compares aerosol measurements from these aircraft including aerosol concentrations, size distributions (and integral properties), chemistry, and optical properties. Best overall agreement (generally within RMS instrumental uncertainty) was for physical properties of the submircron aerosol, including condensation nuclei concentrations, scattering coefficients, and differential mobility analyzer and optical particle counter (OPC) accumulation mode size distributions. Larger differences (typically outside of the RMS uncertainty) were often observed for parameters related to the supermicron aerosols (total scattering and absorption coefficients, coarse mode Forward Scattering Spectrometer Probe and OPC size distributions/integral properties, and soluble chemical species usually associated with the largest particles, e.g., Na+, Cl−, Ca2+, and Mg2+), where aircraft sampling is more demanding. Some of the observed differences reflect different inlets (e.g., low-turbulence inlet enhancement of coarse mode aerosol), differences in sampling lines, and instrument configuration and design. Means and variances of comparable measurements for horizontal legs were calculated, and regression analyses were performed for each platform and allow for an assessment of instrument performance. These results provide a basis for integrating aerosol data from these aircraft platforms for both the TRACE-P and ACE-Asia experiments

    Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B

    Get PDF
    In-situ airborne measurements of trace gases, aerosol size distributions, chemistry and optical properties were conducted over Mexico and the Eastern North Pacific during MILAGRO and INTEX-B. Heterogeneous reactions between secondary aerosol precursor gases and mineral dust lead to sequestration of sulfur, nitrogen and chlorine in the supermicrometer particulate size range. Simultaneous measurements of aerosol size distributions and weak-acid soluble calcium result in an estimate of 11 wt% of CaCO_3 for Asian dust. During transport across the North Pacific, ~5–30% of the CaCO_3 is converted to CaSO_4 or Ca(NO_3)_2 with an additional ~4% consumed through reactions with HCl. The 1996 to 2008 record from the Mauna Loa Observatory confirm these findings, indicating that, on average, 19% of the CaCO_3 has reacted to form CaSO_4 and 7% has reacted to form Ca(NO_3)_2 and ~2% has reacted with HCl. In the nitrogen-oxide rich boundary layer near Mexico City up to 30% of the CaCO_3 has reacted to form Ca(NO_3)_2 while an additional 8% has reacted with HCl. These heterogeneous reactions can result in a ~3% increase in dust solubility which has an insignificant effect on their optical properties compared to their variability in-situ. However, competition between supermicrometer dust and submicrometer primary aerosol for condensing secondary aerosol species led to a 25% smaller number median diameter for the accumulation mode aerosol. A 10–25% reduction of accumulation mode number median diameter results in a 30–70% reduction in submicrometer light scattering at relative humidities in the 80–95% range. At 80% RH submicrometer light scattering is only reduced ~3% due to a higher mass fraction of hydrophobic refractory components in the dust-affected accumulation mode aerosol. Thus reducing the geometric mean diameter of the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol. In the presence of dust, nitric acid concentrations are reduced to 85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport

    Rationale and Design of a Remote Web-Based Daily Dairy Study Examining Sexual Minority Stress, Relationship Factors, And Alcohol Use In Same-Sex Female Couples Across the United States: Study Protocol of Project Relate

    Get PDF
    Background: The Healthy People 2020 initiative aims to reduce health disparities, including alcohol use, among sexual minority women (SMW; eg, lesbian, bisexual, queer, and pansexual). Compared with heterosexual women, SMW engage in more hazardous drinking and report more alcohol-related problems. Sexual minority stress (ie, the unique experiences associated with stigmatization and marginalization) has been associated with alcohol use among SMW. Among heterosexuals, relationship factors (eg, partner violence and drinking apart vs together) have also been associated with alcohol use. Negative affect has also been identified as a contributor to alcohol use. To date, most studies examining alcohol use among SMW have used cross-sectional or longitudinal designs. Objective: Project Relate was designed to increase our understanding of alcohol use among young SMW who are at risk for alcohol problems. The primary objectives of this study are to identify daily factors, as well as potential person-level risk and protective factors, which may contribute to alcohol use in SMW. Secondary objectives include examining other physical and mental concerns in this sample (eg, other substance use, eating, physical activity, and stress). Methods: Both partners of a female same-sex couple (aged 18-35 years; n=150 couples) are being enrolled in the study following preliminary screening by a market research firm that specializes in recruiting sexual minority individuals. Web-based surveys are being used to collect information about the primary constructs of interest (daily experiences of alcohol use, sexual minority stress, relationship interactions, and mood) as well as secondary measures of other physical and mental health constructs. Data are collected entirely remotely from women across the United States. Each member of eligible couples completes a baseline survey and then 14 days of daily surveys each morning. Data will be analyzed using multilevel structural equation modeling. Results: To date, 208 women (ie, 104 couples) were successfully screened and enrolled into the study. In total, 164 women have completed the 14-day daily protocol. Compliance with completing the daily diaries has been excellent, with participants on average completing 92% of the daily diaries. Data collection will be completed in fall 2018, with results published as early as 2019 or 2020. Conclusions: Project Relate is designed to increase our understanding of between- and within-person processes underlying hazardous drinking in understudied, at-risk SMW. The study includes a remote daily diary methodology to provide insight into variables that may be associated with daily hazardous alcohol use. Before the development of programs that address hazardous alcohol use among young SMW, there is a need for better understanding of individual and dyadic variables that contribute to risk in this population. The unique challenges of recruiting and enrolling SMW from across the United States in a daily diary study are discussed

    Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels

    Get PDF
    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January–February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer–Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. <br><br> Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg<sup>−1</sup> for JP-8 to 1.2 mg kg<sup>−1</sup> for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg<sup>−1</sup> (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. <br><br> As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30–44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content. <br><br> To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (−4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to −8 × 10<sup>14</sup> particles (kg fuel)<sup>−1</sup> °C<sup>−1</sup> for particle number emissions and −10 mm<sup>3</sup> (kg fuel)<sup>−1</sup> °C<sup>−1</sup> for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO<sub>2</sub>) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power

    Laboratory and modeling studies on the effects of water and soot emissions and ambient conditions on the properties of contrail ice particles in the jet regime

    Get PDF
    Contrails and contrail-induced cirrus clouds are identified as the most uncertain components in determining aviation impacts on global climate change. Parameters affecting contrail ice particle formation immediately after the engine exit plane (< 5 s in plume age) may be critical to ice particle properties used in large-scale models predicting contrail radiative forcing. Despite this, detailed understanding of these parametric effects is still limited. In this paper, we present results from recent laboratory and modeling studies conducted to investigate the effects of water and soot emissions and ambient conditions on near-field formation of contrail ice particles and ice particle properties. The Particle Aerosol Laboratory (PAL) at the NASA Glenn Research Center and the Aerodyne microphysical parcel model for contrail ice particle formation were employed. Our studies show that exhaust water concentration has a significant impact on contrail ice particle formation and properties. When soot particles were introduced, ice particle formation was observed only when exhaust water concentration was above a critical level. When no soot or sulfuric acid was introduced, no ice particle formation was observed, suggesting that ice particle formation from homogeneous nucleation followed by homogeneous freezing of liquid water was unfavorable. Soot particles were found to compete for water vapor condensation, and higher soot concentrations emitted into the chamber resulted in smaller ice particles being formed. Chamber conditions corresponding to higher cruising altitudes were found to favor ice particle formation. The microphysical model captures trends of particle extinction measurements well, but discrepancies between the model and the optical particle counter measurements exist as the model predicts narrower ice particle size distributions and ice particle sizes nearly a factor of two larger than measured. These discrepancies are likely due to particle loss and scatter during the experimental sampling process and the lack of treatment of turbulent mixing in the model. Our combined experimental and modeling work demonstrates that formation of contrail ice particles can be reproduced in the NASA PAL facility, and the parametric understanding of the ice particle properties from the model and experiments can potentially be used in large-scale models to provide better estimates of the impact of aviation contrails on climate change

    Mapping the Operation of the Miniature Combustion Aerosol Standard (Mini-CAST) Soot Generator

    Get PDF
    The Jing Ltd. miniature combustion aerosol standard (Mini- CAST) soot generator is a portable, commercially available burner that is widely used for laboratory measurements of soot processes. While many studies have used the Mini-CAST to generate soot with known size, concentration, and organic carbon fraction under a single or few conditions, there has been no systematic study of the burner operation over a wide range of operating conditions. Here, we present a comprehensive characterization of the microphysical, chemical, morphological, and hygroscopic properties of Mini- CAST soot over the full range of oxidation air and mixing N2 flow rates. Very fuel-rich and fuel-lean flame conditions are found to produce organic-dominated soot with mode diameters of 10–60 nm, and the highest particle number concentrations are produced under fuel-rich conditions. The lowest organic fraction and largest diameter soot (70–130 nm) occur under slightly fuel-lean conditions. Moving from fuel-rich to fuel-lean conditions also increases the O:C ratio of the soot coatings from ~0.05 to ~0.25, which causes a small fraction of the particles to act as cloud condensation nuclei near the Kelvin limit (κ ~ 0–10−3). Comparison of these property ranges to those reported in the literature for aircraft and diesel engine soots indicates that the Mini-CAST soot is similar to real-world primary soot particles, which lends itself to a variety of process-based soot studies. The trends in soot properties uncovered here will guide selection of burner operating conditions to achieve optimum soot properties that are most relevant to such studies
    corecore