1,937 research outputs found

    Scheduling language and algorithm development study. Volume 3, phase 2: As-built specifications for the prototype language and module library

    Get PDF
    Detailed specifications of the prototype language and module library are presented. The user guide to the translator writing system is included

    A review of the factors involved in older people's decision making with regard to influenza vaccination: a literature review

    Get PDF
    Aims and objectives. The aim of this paper was to develop an understanding of the factors involved in older people's decision making with regard to influenza vaccination to inform strategies to improve vaccine uptake and reduce morbidity and mortality. Background. Influenza is a major cause of morbidity and mortality world-wide. In the UK, it accounts for 3000–6000 deaths annually; 85% of these deaths are people aged 65 and over. Despite this, and the widespread and costly annual government campaigns, some older people at risk of influenza and the associated complications remain reluctant to take advantage of the offer of vaccination. Methods. A review of the English language literature referring to older people published between 1996 and 2005 was the method used. Inclusion and exclusion criteria were identified and applied. Results. The majority of the literature was quantitative in nature, investigating personal characteristics thought to be predictors of uptake, such as age, sex, co-morbidity, educational level, income and area of residence. However, there was little discussion of the possible reasons for the significance of these factors and conflict between findings was often evident, particularly between studies employing different methodologies. Other factors identified were prior experience, concerns about the vaccine, perceived risk and advice and information. Relevance to clinical practice. The wealth of demographic information available will be useful at a strategic level in targeting groups identified as being unlikely to accept vaccination. However, the promotion of person-centred ways of working that value the health beliefs, attitudes, perceptions and subjective experiences of older people is likely to be more successful during individual encounters designed to promote acceptance. Without more research in investigating these concepts, our understanding is inevitably limited

    The Indiana Highway Needs Study: Questions and Answers

    Get PDF

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Full text link
    Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee meetin

    Forecasting Periods of Strong Southward Magnetic Field Following Interplanetary Shocks

    Full text link
    Long periods of strong southward magnetic fields are known to be the primary cause of intense geomagnetic storms. The majority of such events are caused by the passage over Earth of a magnetic ejecta. Irrespective of the interplanetary cause, fast-forward shocks often precede such strong southward Bz_{z} periods. Here, we first look at all long periods of strong southward magnetic fields as well as fast-forward shocks measured by the \textit{Wind} spacecraft in a 22.4-year span. We find that 76{\%} of strong southward Bz_{z} periods are preceded within 48 hours by at least a fast-forward shock but only about 23{\%} of all shocks are followed within 48 hours by strong southward Bz_{z} periods. Then, we devise a threshold-based probabilistic forecasting method based on the shock properties and the pre-shock near-Earth solar wind plasma and interplanetary magnetic field characteristics adopting a `superposed epoch analysis'-like approach. Our analysis shows that the solar wind conditions in the 30 minutes interval around the arrival of fast-forward shocks have a significant contribution to the prediction of long-duration southward Bz_{z} periods. This probabilistic model may provide on average a 14-hour warning time for an intense and long-duration southward Bz_{z} period. Evaluating the forecast capability of the model through a statistical and skill score-based approach reveals that it outperforms a coin-flipping forecast. By using the information provided by the arrival of a fast-forward shock at L1, this model represents a marked improvement over similar forecasting methods. We outline a number of future potential improvements.Comment: published in Space Weather, 22 Nov 201

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Get PDF
    Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors

    On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 AU

    Full text link
    Measurements of coronal mass ejections (CMEs) by multiple spacecraft at small radial separations but larger longitudinal separations is one of the ways to learn about the three-dimensional structure of CMEs. Here, we take advantage of the orbit of the Wind spacecraft that ventured to distances of up to 0.012 astronomical units (au) from the Sun-Earth line during the years 2000 to 2002. Combined with measurements from ACE, which is in a tight halo orbit around L1, the multipoint measurements allow us to investigate how the magnetic field inside magnetic ejecta (MEs) changes on scales of 0.005 - 0.012 au. We identify 21 CMEs measured by these two spacecraft for longitudinal separations of 0.007 au or more. We find that the time-shifted correlation between 30-minute averages of the non-radial magnetic field components measured at the two spacecraft is systematically above 0.97 when the separation is 0.008 au or less, but is on average 0.89 for greater separations. Overall, these newly analyzed measurements, combined with 14 additional ones when the spacecraft separation is smaller, point towards a scale length of longitudinal magnetic coherence inside MEs of 0.25 - 0.35 au for the magnitude of the magnetic field but 0.06 - 0.12 au for the magnetic field components. This finding raises questions about the very nature of MEs. It also highlights the need for additional "mesoscale" multi-point measurements of CMEs with longitudinal separations of 0.01 - 0.2 au.Comment: Published in ApJL, 6 page

    Girls’ and women’s education within Unesco and the World Bank, 1945–2000

    Get PDF
    By 2000, girls’ and women’s education was a priority for international development organisations. While studies have examined the impact of recent campaigns and programmes, there has been less exploration of ideas about girls’ and women’s education within development thought in the immediate post?colonial period, and the political mechanisms through which this came to be a global concern. Through a study of policy documents, this paper investigates how the education of girls and women came to be prioritised within the two principle UN agencies involved with education since 1945, the World Bank and Unesco. A shift in priorities is evident, from ensuring formal rights and improving the status of women, to expanding the productive capacities of women, fertility control and poverty reduction. While the ascendance of human capital theory provided a space for a new perception of the role of women’s education in development, in other policy arenas women’s education was central to exploring more substantive, rights?based notions of gender equality. Ultimately, the goal of improving girls’ and women’s education fitted into diverse development agendas, paving the way for it to become a global development priority

    Optimal staged self-assembly of linear assemblies

    Get PDF
    We analyze the complexity of building linear assemblies, sets of linear assemblies, and O(1)-scale general shapes in the staged tile assembly model. For systems with at most b bins and t tile types, we prove that the minimum number of stages to uniquely assemble a 1 n line is (logt n + logb n t + 1). Generalizing to O(1) n lines, we prove the minimum number of stages is O( log n tb t log t b2 + log log b log t ) and ( log n tb t log t b2 ). Next, we consider assembling sets of lines and general shapes using t = O(1) tile types. We prove that the minimum number of stages needed to assemble a set of k lines of size at most O(1) n is O( k log n b2 + k p log n b + log log n) and ( k log n b2 ). In the case that b = O( p k), the minimum number of stages is (log n). The upper bound in this special case is then used to assemble \hefty shapes of at least logarithmic edge-length-to- edge-count ratio at O(1)-scale using O( p k) bins and optimal O(log n) stages
    corecore