33 research outputs found

    The two homologous chaperonin 60 proteins of Mycobacterium tuberculosis have distinct effects on monocyte differentiation into osteoclasts.

    Get PDF
    Mycobacterium tuberculosis produces two homologous chaperonin (Cpn)60 proteins, Cpn60.1 and Cpn60.2 (Hsp65). Both proteins stimulate human and murine monocyte cytokine synthesis but, unlike Cpn60 proteins from other microbial species, fail to stimulate the breakdown of cultured murine bone. Here, we have examined the mechanism of action of these proteins on bone remodelling and osteoclastogenesis, induced in vitro in murine calvarial explants and the murine monocyte cell line RAW264.7. Additionally, we have determined their effect on bone remodelling in vivo in an animal model of arthritis. Recombinant Cpn60.1 but not Cpn60.2 inhibited bone breakdown both in vitro, in murine calvaria and in vivo, in experimental arthritis. Analysis of the mechanism of action of Cpn60.1 suggests that this protein works by directly blocking the synthesis of the key osteoclast transcription factor, nuclear factor of activated T cells c1. The detection of circulating immunoreactive intact Cpn60.1 in a small number of patients with tuberculosis but not in healthy controls further suggests that the skeleton may be affected in patients with tuberculosis. Taken together, these findings reveal that M. tuberculosis Cpn60.1 is a potent and novel inhibitor of osteoclastogenesis both in vitro and in vivo and a potential cure for bone-resorptive diseases like osteoporosis

    Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis.</p> <p>Methods</p> <p>Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots.</p> <p>Results</p> <p>A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein).</p> <p>Conclusions</p> <p>A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC.</p

    Human Apolipoprotein A-I-Derived Amyloid: Its Association with Atherosclerosis

    Get PDF
    Amyloidoses constitute a group of diseases in which soluble proteins aggregate and deposit extracellularly in tissues. Nonhereditary apolipoprotein A-I (apoA-I) amyloid is characterized by deposits of nonvariant protein in atherosclerotic arteries. Despite being common, little is known about the pathogenesis and significance of apoA-I deposition. In this work we investigated by fluorescence and biochemical approaches the impact of a cellular microenvironment associated with chronic inflammation on the folding and pro-amyloidogenic processing of apoA-I. Results showed that mildly acidic pH promotes misfolding, aggregation, and increased binding of apoA-I to extracellular matrix elements, thus favoring protein deposition as amyloid like-complexes. In addition, activated neutrophils and oxidative/proteolytic cleavage of the protein give rise to pro amyloidogenic products. We conclude that, even though apoA-I is not inherently amyloidogenic, it may produce non hereditary amyloidosis as a consequence of the pro-inflammatory microenvironment associated to atherogenesis
    corecore