28 research outputs found

    Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy

    Get PDF
    Aim. The aim of this study was to assess the changes of markers of DNA damage by glycation and oxidation in patients with type 2 diabetes and the association with diabetic nephropathy. Methodology. DNA oxidation and glycation adducts were analysed in plasma and urine by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. DNA markers analysed were as follows: the oxidation adduct 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-OxodG) and glycation adducts of glyoxal and methylglyoxal—imidazopurinones GdG, MGdG, and N2-(1,R/S-carboxyethyl)deoxyguanosine (CEdG). Results. Plasma 8-OxodG and GdG were increased 2-fold and 6-fold, respectively, in patients with type 2 diabetes, with respect to healthy volunteers. Median urinary excretion rates of 8-OxodG, GdG, MGdG, and CEdG were increased 28-fold, 10-fold, 2-fold, and 2-fold, respectively, in patients with type 2 diabetes with respect to healthy controls. In patients with type 2 diabetes, nephropathy was associated with increased plasma 8-OxodG and increased urinary GdG and CEdG. In a multiple logistic regression model for diabetic nephropathy, diabetic nephropathy was linked to systolic blood pressure and urinary CEdG. Conclusion. DNA oxidative and glycation damage-derived nucleoside adducts are increased in plasma and urine of patients with type 2 diabetes and further increased in patients with diabetic nephropathy

    Dietary factors and low-grade inflammation in relation to overweight and obesity

    Get PDF
    Low-grade inflammation is a characteristic of the obese state, and adipose tissue releases many inflammatory mediators. The source of these mediators within adipose tissue is not clear, but infiltrating macrophages seem to be especially important, although adipocytes themselves play a role. Obese people have higher circulating concentrations of many inflammatory markers than lean people do, and these are believed to play a role in causing insulin resistance and other metabolic disturbances. Blood concentrations of inflammatory markers are lowered following weight loss. In the hours following the consumption of a meal, there is an elevation in the concentrations of inflammatory mediators in the bloodstream, which is exaggerated in obese subjects and in type 2 diabetics. Both high-glucose and high-fat meals may induce postprandial inflammation, and this is exaggerated by a high meal content of advanced glycation end products (AGE) and partly ablated by inclusion of certain antioxidants or antioxidant-containing foods within the meal. Healthy eating patterns are associated with lower circulating concentrations of inflammatory markers. Among the components of a healthy diet, whole grains, vegetables and fruits, and fish are all associated with lower inflammation. AGE are associated with enhanced oxidative stress and inflammation. SFA and trans-MUFA are pro-inflammatory, while PUFA, especially long-chain n-3 PUFA, are anti-inflammatory. Hyperglycaemia induces both postprandial and chronic low-grade inflammation. Vitamin C, vitamin E and carotenoids decrease the circulating concentrations of inflammatory markers. Potential mechanisms are described and research gaps, which limit our understanding of the interaction between diet and postprandial and chronic low-grade inflammation, are identifie

    Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy

    Get PDF
    Background Diabetic nephropathy (DN) is one of the major late complications of diabetes. Treatment aimed at slowing down the progression of DN is available but methods for early and definitive detection of DN progression are currently lacking. The ‘Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria trial' (PRIORITY) aims to evaluate the early detection of DN in patients with type 2 diabetes (T2D) using a urinary proteome-based classifier (CKD273). Methods In this ancillary study of the recently initiated PRIORITY trial we aimed to validate for the first time the CKD273 classifier in a multicentre (9 different institutions providing samples from 165 T2D patients) prospective setting. In addition we also investigated the influence of sample containers, age and gender on the CKD273 classifier. Results We observed a high consistency of the CKD273 classification scores across the different centres with areas under the curves ranging from 0.95 to 1.00. The classifier was independent of age (range tested 16-89 years) and gender. Furthermore, the use of different urine storage containers did not affect the classification scores. Analysis of the distribution of the individual peptides of the classifier over the nine different centres showed that fragments of blood-derived and extracellular matrix proteins were the most consistently found. Conclusion We provide for the first time validation of this urinary proteome-based classifier in a multicentre prospective setting and show the suitability of the CKD273 classifier to be used in the PRIORITY tria

    Ex vivo low-density lipoprotein oxidizability and in vivo lipid peroxidation in patients on CAPD

    Get PDF
    Ex vivo low-density lipoprotein oxidizability and in vivo lipid peroxidation in patients on CAPD.BackgroundChronic renal failure is associated with accelerated atherosclerosis and a high incidence of cardiovascular disease. Oxidative modification of low-density lipoprotein (LDL) is considered a key event in atherogenesis.MethodsWe studied the ex vivo oxidizability of LDL exposed to Cu2+ ions (lag time, rate of propagation, maximum conjugated diene formation) and its relationship with LDL density, fatty acids, and antioxidants, along with plasma malondialdehyde (MDA) and autoantibodies against Cu2+-, MDA-, and hypochlorous acid-modified LDL and plasma antioxidants in 17 continuous ambulatory peritoneal dialysis (CAPD) patients and 21 healthy control subjects.ResultsLDL α-and γ-tocopherol and total polyunsaturated fatty acid (PUFA) concentrations were significantly higher in the CAPD patients. LDL density was shifted to small, dense LDL. LDL oxidizability was comparable to that of healthy subjects. Lag time correlated positively with LDL α-tocopherol and inversely with both total PUFA concentrations and density; the rate of oxidation and LDL density correlated positively with total PUFA and total fatty acid concentrations, respectively. Ratios of autoantibody titers against oxidized to native LDL did not differ between the two groups. While plasma α-and γ-tocopherol concentrations and tocopherol to cholesterol ratios were significantly higher, vitamin C concentrations were very low in the CAPD patients. MDA concentrations were 1.7 times higher than in healthy subjects.Conclusions(I) Ex vivo LDL oxidizability is normal in CAPD patients as a result of officient protection by LDL-associated lipophilic antioxidants, although the LDL composition is altered toward high oxidizability; and (2) the plasma antioxidant screen is insufficient due to impaired vitamin C status

    Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy

    No full text
    Aim. The aim of this study was to assess the changes of markers of DNA damage by glycation and oxidation in patients with type 2 diabetes and the association with diabetic nephropathy. Methodology. DNA oxidation and glycation adducts were analysed in plasma and urine by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. DNA markers analysed were as follows: the oxidation adduct 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-OxodG) and glycation adducts of glyoxal and methylglyoxal—imidazopurinones GdG, MGdG, and N2-(1,R/S-carboxyethyl)deoxyguanosine (CEdG). Results. Plasma 8-OxodG and GdG were increased 2-fold and 6-fold, respectively, in patients with type 2 diabetes, with respect to healthy volunteers. Median urinary excretion rates of 8-OxodG, GdG, MGdG, and CEdG were increased 28-fold, 10-fold, 2-fold, and 2-fold, respectively, in patients with type 2 diabetes with respect to healthy controls. In patients with type 2 diabetes, nephropathy was associated with increased plasma 8-OxodG and increased urinary GdG and CEdG. In a multiple logistic regression model for diabetic nephropathy, diabetic nephropathy was linked to systolic blood pressure and urinary CEdG. Conclusion. DNA oxidative and glycation damage-derived nucleoside adducts are increased in plasma and urine of patients with type 2 diabetes and further increased in patients with diabetic nephropathy

    Identification of blood cell transcriptome-based biomarkers in adulthood predictive of increased risk to develop metabolic disorders using early life intervention rat models

    No full text
    Calorie restriction during gestation in rats has long-lasting adverse effects in the offspring. It induces metabolic syndrome-related alterations, which are partially reversed by leptin supplementation during lactation. We employed these conditions to identify transcript-based nutrient sensitive biomarkers in peripheral blood mononuclear cells (PBMCs) predictive of later adverse metabolic health. The best candidate was validated in humans. Transcriptome analysis of PBMCs from adult male Wistar rats of three experimental groups was performed: offspring of control dams (CON), and offspring of 20% calorie-restricted dams during gestation without (CR) and with leptin supplementation throughout lactation (CR-LEP). The expression of 401 genes was affected by gestational calorie restriction and reversed by leptin. The changes preceded metabolic syndrome-related phenotypic alterations. Of these genes, Npc1 mRNA levels were lower in CR vs CON, and normalized to CON in CR-LEP. In humans, NPC1 mRNA levels in peripheral blood cells (PBCs) were decreased in subjects with mildly impaired metabolic health compared to healthy subjects. Therefore, a set of potential transcript-based biomarkers indicative of a predisposition to metabolic syndrome-related alterations were identified, including NPC1, which was validated in humans. Low NPC1 transcript levels in PBCs are a candidate biomarker of increased risk for impaired metabolic health in humans.</p

    Age-related change in the retinoid X receptor beta gene expression in peripheral blood mononuclear cells of healthy volunteers : Effect of 13-cis retinoic acid supplementation

    No full text
    International audienceThe regulation of cell growth and differentiation and also expression of a number of genes by retinoids are mediated by nuclear retinoid receptors (RARs and/or RXRs). In this study we investigated age-related alteration in both RAR and RXR receptor subtypes gene expression and tissue transglutaminase (tTG) activity before and after supplementation with 13-cis retinoic acid (13cRA) in human peripheral blood mononuclear cells (PBMCs). Healthy men (40) were divided in two groups according to their age (young group: 26.1 +/- 4.1 years and old group: 65.4 +/- 3.8 years). Each volunteer received 13cRA (Curacne (R), 0.5 mg/(kg day)) during a period of 4 weeks. We have shown that RXR beta expression was decreased significantly (p = 0.0108) in PBMCs of elderly men when compared to that of young volunteers. Distribution of retinoic acid receptor subtype expression in PBMCs was found in the order: RXRP > RAR gamma > RXR alpha > RAR alpha. The tTG activity in PBMCs reflected a trend to be enhanced after 13-cis retinoic acid supplementation. In conclusion, we demonstrate a significant decrease in the expression of RXRP subtype of rexinoid receptors in PBMCs of healthy elderly men. Our data suggest that in healthy elderly men reduction of RXRP expression in PBMCs might be a common feature of physiological senescence
    corecore