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Aim. The aim of this study was to assess the changes of markers of DNA damage by glycation and oxidation in patients with type 

2 diabetes and the association with diabetic nephropathy. Methodology. DNA oxidation and glycation adducts were analysed in 

plasma and urine by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. DNA markers analysed 

were as follows: the oxidation adduct 7,8-dihydro-8-oxo-2�-deoxyguanosine (8-OxodG) and glycation adducts of glyoxal and 

methylglyoxal—imidazopurinones GdG, MGdG, and N2-(1,R/S-carboxyethyl)deoxyguanosine (CEdG). Results. Plasma 8-

OxodG and GdG were increased 2-fold and 6-fold, respectively, in patients with type 2 diabetes, with respect to healthy 

volunteers. Median urinary excretion rates of 8-OxodG, GdG, MGdG, and CEdG were increased 28-fold, 10-fold, 2-fold, and 2-

fold, respectively, in patients with type 2 diabetes with respect to healthy controls. In patients with type 2 diabetes, nephropathy 

was associated with increased plasma 8-OxodG and increased urinary GdG and CEdG. In a multiple logistic regression model 

for diabetic nephropathy, diabetic nephropathy was linked to systolic blood pressure and urinary CEdG. Conclusion. DNA 

oxidative and glycation damage-derived nucleoside adducts are increased in plasma and urine of patients with type 2 diabetes 

and further increased in patients with diabetic nephropathy. 

1. Introduction 

Reactive oxygen species (ROS) and dicarbonyl metabolites, 

glyoxal and methylglyoxal, are some of the most reactive 

metabolites present in human metabolism. They are increased 

in diabetes and diabetic nephropathy [1–3]. ROS react with 

deoxyguanosine residues of DNA to form 8-dihydro-8- oxo-

2�-deoxyguanosine (8-OxodG). The DNA content of 8-

OxodG residues was increased in lymphocyte DNA in clinical 

diabetes [4]. Reactive dicarbonyl intermediates of endogenous 

glycation, glyoxal and methylglyoxal, also react with 

deoxyguanosine residues of DNA to form mainly 

imidazopurinone adducts. Glyoxal forms 3-(2�-deox-

yribosyl)-6, 7-dihydro-6, 7-dihydroxyimidazo-[2,3-b] purin-

9(8)one (GdG) and methylglyoxal forms two imidazopu-

rinone structural isomers, 3-(2�-deoxyribosyl)-6,7-dihydro6, 

7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one 

(MGdG). DNA glycation by methylglyoxal also forms two 

stereoisomers, N2-modified derivatives, N2-(1,R/S-carboxy-

ethyl)-deoxyguanosine (CEdG) [5], Figure 1(a). GdG, 

MGdG, and CEdG are nucleotide advanced glycation 

endproducts (AGEs). Methylglyoxal-derived MGdG was a 

quantitatively major adduct of endogenous damage in healthy 

volunteers [5]. Damage to DNA by endogenous glyoxal and 
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FIGURE 1: (a) Formation of glycation and oxidation adducts of deoxyguanosine. The common 2�-deoxyribosyl group has been omitted 

for clarity. (b)–(i) Nucleotide glycation and oxidation adducts in plasma and urine of healthy controls subjects and patients with type 2 

diabetes. Plasma: (b) GdG, (c) MGdG, (d) CEdG, and (e) 8-OxodG. Urine: (f) GdG, (g) MGdG, (h) CEdG, and (i) 8-OxodG. (j)–(l) 

Nucleotide glycation and oxidation adducts in plasma and urine in patients with type 2 diabetes with and without nephropathy. (j) Plasma 

8-OxodG, (k) urinary GdG, and (l) urinary CE-dG. Data are median with the upper and lower quartile as error bars. Significance: ∗𝑃 < 
0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001; Mann-Whitney 𝑈. 

methylglyoxal is suppressed by glyoxalase 1 (Glo1) of the 
cytoplasmic glyoxalase system [6]. The expression and 

activity of Glo1 in the kidney were decreased in experimental 

models of diabetic nephropathy—streptozotocin-induced 
diabetes in mice and rats and the db/db diabetic mouse [7–9]. 

This is associated with increased dicarbonyl glycation of 
proteins linked to the development of diabetic nephropathy 

[10]. Increased urinary 8-OxodG excretion has been found in 

patients with diabetes type 2 diabetes (T2DM), with further 
increases associated with the presence of microvascular 

complications, and was a predictor of diabetic nephropathy 
[11, 12]. 

Nucleotide AGEs are associated with DNA single-strand 
breaks and increased mutation frequencies [13]. Oxidised and 

glycated nucleosides are removed from DNA by nucleotide 

excision repair of DNA damaged by oxidation and glycation. 
Recent functional genomic studies of Glo1 have linked 

dicarbonyl glycation to the development of diabetic 
nephropathy [14, 15]. The plasma concentration and urinary 

fluxes of glyoxal and methylglyoxal-derived nucleoside AGEs 
in diabetes and diabetic nephropathy are unknown. 

Reliable quantitation of oxidised and glycated nucleosides 

has proven difficult because of inadequate sensitivity and 
specificity of detection responses and poor adduct stability 
and recovery during preanalytic processing. Initial studies 
involved 32P-labelling studies of DNA digests [16] and 
immunoassay [17]. Stable isotopic dilution analysis liquid 

chromatography with tandem mass spectrometric detection 
(LC-MS/MS) has been used for assay of 8-OxodG [18]. For 
estimation of both DNA glycation and oxidation adducts, the 
high specificity and sensitivity of LC-MS/MS makes this the 
preferred method for DNA damage marker analysis. 

We developed a stable isotopic dilution analysis LC-MS/MS 
method to concurrently quantify GdG, MGdG, CEdG, and 

8- OxodG in plasma and urinary ultrafiltrate [5]. 8-OxodG 

has been studied extensively in plasma and urine as a 
biomarker of oxidative damage [18] whereas the diagnostic 

utility of DNA glycation adducts is unknown. 

Herein we analysed DNA oxidation and glycation mark-

ers in plasma and urine of patients with T2DM with and 

without diabetic nephropathy. Healthy volunteers served as 
controls. The outcome revealed marked increases in DNA 

damage in T2DM and further increase of selected markers 

in diabetic nephropathy. Increased urinary excretion of 
glycation adducts GdG and CEdG was indicative of 

diabetic nephropathy. 

2. Methods 

2.1. Participants. Patients with type 2 diabetes and overt 
nephropathy (T2DM + DN) and patients with T2DM and 

without overt nephropathy (T2DM − DN) were recruited in 
the EU-funded PREDICTIONS project [19]. Healthy 
volunteers were recruited in the EU-funded VITAGE project 
[20]. Both studies were conducted at the Human Nutrition and 
Metabolism Research and Training Center, Karl Franzens 
University of Graz, Austria, and the Clinical Division of 

Nephrology and the Clinical Division of Endocrinology and 
Nuclear Medicine, Department of Internal Medicine, Medical 
University of Graz, Austria. The study protocols were 
approved by the Ethics Committee of the Medical University 
of Graz, Austria, and written informed consent was obtained 
from all study subjects. Diagnosis of diabetes was established 

in accordance with the WHO criteria: 
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TABLE 1: Characteristics of human subjects recruited for this study. 

5 

Subject group Control T2DM-DN T2DM+DN 

𝑛  28 28 28 

Age (years) 61 ± 8 63 ± 6 60 ± 10 

Gender (M/F) 28/0 20/8 20/8 

BMI (kg/m2) 26.1 ± 1.8 28.5 ± 5.0*
 33.2 ± 5.0***,OOO 

Fasting plasma glucose (mM) 5.6 ± 0.5 9.4 ± 3.0***
 9.3 ± 3.8***

 

A1C (%) ND 7.6 ± 1.2 7.5 ± 1.5 

(mmol/mol)  60 ± 13 58 ± 17 

Systolic BP (mmHg) 135 ± 13 136 ± 13 153 ± 22***
 

Diastolic BP (mmHg) 84 ± 6 81 ± 10 84 ± 10 

Total cholesterol (mM) 5.52 ± 0.94 5.04 ± 1.13 5.17 ± 1.14 

LDL cholesterol (mM) 3.31 ± 0.69 2.92 ± 0.96 2.58 ± 0.92*
 

HDL cholesterol (mM) 1.49 ± 0.32 1.46 ± 0.38 1.40 ± 0.29 

Urinary albumin (mg/24 h) ND 13 ± 10 2437 (371–9000)***
 

eGFR (ml/min) 69 ± 13 73 ± 13 31.7 (20.0–45.3)***,OOO 
 
ND = not determined. Data are mean ± SD or median (minimum–maximum). Significance: * and ***, P < 0.05 and P < 0.001 with respect to healthy 

volunteers, and OOO, P� < 0.001 with respect to patients with type 2 diabetes without nephropathy. 

fasting plasma glucose ≥7.0 mmol/L, a two-hour value in an 

oral glucose tolerance test 11.1 mmol/L, or random plasma 

glucose 11.1 mmol/L in the presence of symptoms, aged 35– 

75 with a documented duration of diabetes of ≥5 years being 

eligible. T2DM was diagnosed by lack of criteria for type 1 

diabetes. Inclusion criteria for cases were albuminuria >300 

mg/d and known overt diabetic retinopathy. Retinopathy was 

requested to be present to ensure that albuminuria is the 

consequence of diabetic nephropathy rather than a 

nondiabetic glomerulopathy. A renal biopsy would be the 

gold standard to discriminate between diabetic nephropathy 

and a nondiabetic glomerulopathy, but a renal biopsy is 

rarely taken in patients with T2DM. Several studies have 

indicated that presence of retinopathy is a good alternative 

inclusion criterion to discriminate between diabetic 

nephropathy and nondiabetic glomerulopathy in patients with 

T2DM with albuminuria [21–23]. Exclusion criteria were 

chronic renal failure, known causes of renal failure other than 

diabetes, and non-Caucasian ethnic origin. Cases and controls 

were matched for gender and diabetes duration. Exclusion 

criteria for T2DM-DN were microalbuminuria, non-

Caucasian ethnic origin, and, in case of use of RAAS-

blocking medication, unknown albuminuria status prior to 

start of treatment. Estimated GFR (eGFR) was determined by 

the Chronic Kidney Disease Epidemiology Collaboration 

equations: for females (for whom [Creatinine]plasma was 

>62𝜇M), eGFR = 144 x ([Creatinine]plasma/62)−1.209 x 

(0.993)Age; and, for males, when [Creatinine]plasma ≤ 

80𝜇M, eGFR = 141 x ([Creatinine]p las ma/80)−0.411 x 

(0.993)Age, and when [Creatinine]plasma > 80 𝜇M, eGFR = 141 

x ([Creatinine]plasma/80)−1.209 x (0.993)Age [24]. Glycated 

haemoglobin (A1C) was determined by a validated ion 

exchange high pressure chromatography method (Menarini 

ARKRAY ADAMS A1C HA-8180 analyser, Menarini 

Diagnostics, Florence, Italy) [25]. Subject characteristics 

are given in Table 1. 

2.2. Methods. Venous blood samples were collected from all 

study subjects after overnight fast and plasma samples were 

prepared immediately and stored at −80°C until analysis; 24 h 

urines collections were made and aliquots prepared and stored 

at −80°C until analysis. Ultrafiltrates were prepared by 

microspin ultrafiltration (10 kDa cut-off) of plasma and urine 

(100 𝜇L), collecting ca. 50 𝜇L ultrafiltrate. Sample processing 

and storage validation were published previously [5]. 

Nucleotide markers of glycation and oxidation were 

determined by stable isotopic dilution analysis LC-MS/MS. 

GdG, MGdG, CEdG, and 8-OxodG and related stable isotopic 

[13C10, 15N5] substituted standards were prepared as described 

[5]. For LC-MS/MS, plasma and urine ultrafiltrates (40 𝜇L) 

were spiked with 10 𝜇L isotopic standard mixture containing 

0.1 nmol [13C10, 15N5] dG, 1 pmol [13C10, 15N5] 8- OxodG, 

1pmol [13C10, 15N5] MGdG and CEdG, and 1pmol [13C10, 
15N5] GdG. LC-MS/MS was performed using an Acquity 

UPLC-Quattro Premier tandem mass spectrometer with a BEH 

C18 1.7 𝜇m particle size, 2.1 x 100 mm column. The mobile 

phase (0.25 mL/min) was 0.1% formic acid with a linear 

gradient of 0–10% acetonitrile from 2 to 10 min and isocratic 

10% acetonitrile from 10 to 15min. After analysis, the column 

was washed with 50% acetonitrile, 0.1% formic acid for 10 

min and thereafter reequilibrated with initial mobile phase for 

10 min. The column temperature was varied from 10°C. For 

GdG, MGdG, CEdG, and 8-OxodG, limits of detection were 

0.8, 2.5, 2.2, and 0.7 fmol; analytical recoveries were 104, 97, 

98%, and 99%, respectively, and coefficients of variation 2–

7% [5]. 



2.3. Statistical Analysis. Data are median (minimum–maxi-

mum) or median (lower–upper quartile) values. Significance 

of differences between means was assessed by Mann-Whitney 
𝑈 test. Bivariate regression was nonparametric (Spearman) 

and logistic regression was performed of DN on continuous 
variables, excluding the recruitment qualifier of urinary 

albumin, solving for regression coefficient B�. Statistical 
analysis was performed by the SPSS software, v21. 

3. Results 

3.1. DNA Glycation Adducts in Plasma and Urine. Biomark-

ers of nucleotide glycation and oxidation are conveniently 
determined by assay of glycated and oxidised nucleosides in 

plasma and urine ultrafiltrates. This was performed with 

samples from healthy controls and patients with T2DM with 
and without diabetic nephropathy. Median plasma concen-

trations of GdG, MGdG, CEdG, and 8-OxodG in healthy 
subjects were 0.07, 0.34, 0.14, and 0.08 nM, respectively. 

Plasma GdG was increased 6-fold and plasma 8-OxodG 
increased 2-fold in patients with T2DM. Median urinary 

excretion rates of GdG, MGdG, CEdG, and 8-OxodG in 

healthy subjects were 0.23, 2.63, 0.90, and 0.90 nmol/24 h, 
respectively. In patients with T2DM, urinary GdG, MGdG, 

CEdG, and 8-OxodG were increased 10-fold, 2-fold, 2-fold, 
and 28-fold, respectively, Figures 1(b)–1(i). 

We also assessed the effect of diabetic nephropathy (DN) 
in patients with T2DM on plasma and urinary nucleotide 

glycation and oxidation damage markers. In plasma, median 

8-OxodG concentration was increased 30% in DN and in 
urine GdG was increased 24% and CEdG increased 60% in 

diabetic nephropathy, Figures 1(j)–1(l). 

3.2. Correlation Analysis. Bivariate correlation analysis of 

clinical chemistry variables of renal function with nucleoside 
glycation and oxidation analytes in patients with T2DM is 
given in Table 2. As expected, there were a strong negative 
correlation of plasma creatinine with eGFR (r� = −0.95, P < 
0.001), a strong positive correction of plasma creatinine with 

urinary albumin excretion UAE (r = 0.61, P� < 0.001), and 
a strong negative correction of eGFR with UAE (r = −0.55, 
P� < 0.001). There were also positive correlations of urinary 
excretions of GdG and CEdG with UAE (r = 0.38 and 0.42, 
resp., P� < 0.01) and a positive correlation of plasma 8- 
OxodG with plasma creatinine (r = 0.38, P� < 0.01). For 

correlation between nucleotide glycation and oxidation ana-
lytes, in plasma there were a strong positive correlation of 
MGdG with CEdG (r = 0.46, P� < 0.001) and also positive 
correlation of MGdG with 8-OxodG (r� = 0.45, P < 0.01) 
and GdG with CEdG (r = 0.47, P� < 0.01). For urinary 
excretion, there was a positive correlation of MGdG excretion 

with 8- OxodG excretion (r� = 0.37, P < 0.01). There was 
also a positive correlation of plasma MGdG with urinary 
MGdG (r = 0.41, P < 0.01) but there were no similar cor-
relations of plasma and urinary levels of other nucleotide 
glycation and oxidation analytes. There was no correlation of 
clinical chemistry variables of glycemic control (fasting 

plasma glucose, A1C), total cholesterol, LDL cholesterol, 
HDL 

cholesterol, or systolic and diastolic blood pressure with 

nucleotide glycation and oxidation markers. 

In a multiple logistic regression analysis of diabetic 
nephropathy on clinical and clinical chemistry variables, the 

following variables were included: clinical variables previ-
ously associated with diabetic nephropathy (age, gender, A1C, 

systolic and diastolic blood pressure, and total cholesterol) 

[21, 26], related markers of metabolic control (fasting plasma 
glucose, LDL, and HDL), other factors linked to increased 

glyoxal and methylglyoxal (duration of diabetes, BMI) [1, 
22], and markers of DNA glycation and oxidation measured 

noninvasively (urinary excretions of GdG, MGdG, CEdG, and 
8-OxodG). Plasma creatinine, eGFR, and UAE were excluded 

from the model as established biomarkers of diabetic 

nephropathy. Forward stepwise selection of variables gave a 
multiple logistic regression model linking diabetic 

nephropathy to systolic blood pressure (B� = 0.05 ± 0.02, 
exponent 1.05; P� = 0.009) and urinary excretion of CEdG 

(B = 1.00 ± 0.41, exponent 2.70; P� = 0.016, 𝑛 = 56). This 

is consistent with the increased systolic blood pressure found 
in patients with diabetic nephropathy and the positive 

correlation of urinary CEdG with UAE, Tables 1 and 2. 

4. Discussion 

Herein we found, for the first time, increased plasma levels 

and urinary excretion of DNA glycation adducts in patients 
with T2DM and a link to diabetic nephropathy. Hence, mea-

surement of DNA glycation adducts and nucleosides in body 

fluids may be valuable biomarkers of quantitative and func-
tional important DNA damage in vivo. Glyoxal is formed in 

physiological systems by lipid peroxidation and degradation 
of glycated proteins and monosaccharides. Methylglyoxal is 

formed mainly by degradation of triosephosphates and also 
by ketone body metabolism and threonine catabolism [23]. 

Both dicarbonyls are metabolised by the glutathione-

dependent Glo1 [6] recently linked mechanistically to the 
development of diabetic nephropathy [14]. Glycation of 

DNA by glyoxal and methylglyoxal has been linked to DNA 
strand breaks and mutagenesis [27, 28], and cellular 

dicarbonyl concentrations increase in oxidative stress [29]. 

Formation of MGdG and CEdG by glycation of DNA with 
endogenous methylglyoxal may explain the previously 

reported enhancement of DNA modification by glucose 
metabolites under conditions of glutathione depletion [30], 

increased DNA unwinding, and single-strand breaks of 
DNA in vascular endothelial cell in hyperglycemia in vitro 

[31] and increased single-strand breaks of DNA of patients 

with diabetes [32]. 

In previous studies we found levels of GdG and CEdG 
residues in peripheral lymphocyte DNA of healthy people 
to be similar to those of 8-OxodG, and the DNA content of 
MGdG exceeded that of the widely studied 8-OxodG [5]. 
Nucleotide AGE content of DNA was also markedly higher 
than that of other physiological aldehydes—such as 4-
hydroxynonenal and malondialdehyde [33]. Modification of 
DNA by physiological dicarbonyls therefore gives rise to 
quantitatively important steady-state levels of deoxyguano-
sine-derived adducts in cellular DNA in vivo. 

6 Journal of Diabetes Research 
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In patients with T2DM, there were particularly large 

increases in glyoxal-derived imidazopurinone GdG in plasma 
and urine and 8-OxodG in urine. We cannot discriminate 

between the contributions to glycated and oxidised nucleo-
sides formed by repair of glycated and oxidised DNA and 

formed by direct glycation and oxidation of deoxyguanosine. 

Formation of GdG in patients with T2DM appears to be 
particularly favoured. For methylglyoxal-derived metabolites, 

CEdG is more stable chemically than MGdG and may be a 
more robust biomarker when released from cells [5]. LC-

MS/MS analysis of urinary excretion of CEdG in 
streptozotocin-induced diabetic rats indicated a 4-fold increase 

in CEdG excretion in diabetes with respect to normal healthy 

control rats [34]. Increased formation of glyoxal and 
methylglyoxal and oxidative stress in hyperglycemia 

associated with diabetes has been linked to microvascular 
complications—including diabetic nephropathy [1, 35]. 

Related damage to proteins [36] and herein DNA provides 

potential markers of nephropathy development. 

We assessed the link of urinary excretion of nucleoside 

glycation and oxidation adducts as potential noninvasive 
biomarkers of diabetic nephropathy. In multiple logistic 

regression analysis, urinary CEdG emerged as a positive 
correlate for diabetic nephropathy. Urinary CEdG also cor-

related positively with UAE and hence is linked to an 

established biomarker of diabetic nephropathy. It also likely 
reflects increased exposure to methylglyoxal. CEdG has 

higher chemical stability than MGdG and higher biological 
stability than methylglyoxal in cells and physiological 

fluids which may explain its greater diagnostic value than 
these related metabolites [5, 22]. 

Plasma and urinary 8-OxodG were also increased in 
patients with T2DM. Urinary oxidation adducts of RNA 

rather than DNA were associated with mortality in a prospec-

tive study of patient with T2DM [37]. Increased urinary 8- 
OxodG in patients with T2DM was found previously but the 

technique used, liquid chromatography with electrochemical 
detection, appears to have overestimated urinary levels of 8-

OxodG by ca. 10-fold [11, 12]. The greater sensitivity and 
specificity for analyte detection provided by multiple reaction 

monitoring detection in LC-MS/MS accounts for this. The 

two major analytical approaches that have been used for the 
measurement of urinary 8-OxodG prior to application of LC-

MS/MS were HPLC combined with electrochemical detection 
and immunoassay. Approaches other than LCMS/MS have 

overestimated 8-OxodG [38–40]. Estimates of urinary 8-

OxodG herein are similar to independent estimates by stable 
isotopic dilution analysis LC-MS/MS for healthy controls [41] 

and patients with T2DM [42]. Similar improvements have 
been made in the detection of CEdG by LC-MS/MS. CEdG 

was determined in urine of normal healthy human subjects 
previously by immunoassay with estimates in the range of 

3.4–344 pmol/mg creatinine and median of ca. 30 pmol/mg 

creatinine [43]. Estimation herein by LC-MS/MS gave 
median (minimum–maximum) values of 0.55 (0.17–1.58) 

pmol/mg creatinine, suggesting that immunoassay procedures 
overestimated urinary CEdG by ca. 50-fold, as was found for 

similar ELISA and LC-MS/MS measurement of 8-OxodG 

[39]. Overestimation is likely  

caused by interference due to imperfect epitope specificity 
of the monoclonal antibody used and formation of CEdG 

from MGdG and other sample components during the high 

pH of preanalytic sample processing. 

A weakness of this study was lack of females in the healthy 
control study group but there was no indication in the T2DM 

group that DNA damage marker levels were linked to gender. 

5. Conclusion 

From the quantitative amount and link to functional end-

points, GdG, MGdG, and CEdG adducts are of likely path-

ogenic and diagnostic significance. Recent further evidence 
linking dicarbonyl glycation with development of DN [14] 

suggests that DNA dicarbonyl adducts may emerge as 
biomarkers of development of DN. This study suggests that 

dicarbonyl adducts are not surrogate measures of metabolic 

control and some are linked to DN. 
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