265 research outputs found

    Frustration Driven Stripe Domain Formation in Co/Pt Multilayer Films

    Full text link
    We report microscopic mechanisms for an unusual magnetization reversal behavior in Co/Pt multilayers where some of the first-order reversal curves protrude outside of the major loop. Transmission x-ray microscopy reveals a fragmented stripe domain topography when the magnetic field is reversed prior to saturation, in contrast to an interconnected pattern when reversing from a saturated state. The different domain nucleation and propagation behaviors are due to unannihilated domains from the prior field sweep. These residual domains contribute to random dipole fields that impede the subsequent domain growth and prevent domains from growing as closely together as for the interconnected pattern.Comment: 13 pages, 3 figures, to appear in AP

    Вплив нормального тиску на напружений стан гуми ступінчастого каната на робочому органі підйомної машини

    Get PDF
    Досліджено напружений стан гуми ступінчастого гумотросового каната у разі його застосування на підйомній машині з бобінним робочим органом та зі шківом тертя. Показано, що максимальні напруження в гумі залежать від конструкції каната та тиску, що виникає поміж шарами. Форма поперечного перерізу троса також впливає на напружений стан гуми.Исследовано напряженное состояние резины ступенчатого резинотросового каната в случае его применения на подъемной машине с бобинным рабочим органом и со шкивом трения. Показано, что максимальные напряжения в резине зависят от конструкции каната и давления, возникающего между слоями. Форма поперечного сечения троса также влияет на напряженное состояние резины.The stress-strain state of stepped rubber-rope cable in bobbin of winding and in pulley friction, are investigated. Shown that the maximum stress in the rubber depends on the design of the rope and the pressure appeared between the layers. Cable cross-sectional shape also affects to the stressstrain state of rubber

    Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants

    No full text
    Synopsis image Glial cell line derived neurotrophic factor (GDNF) improves survival in toxin-models of Parkinson's disease and is currently undergoing clinical development, however the protective mechanism is elusive. This study provides evidence that the GDNF receptor Ret rescues defects of a genetic Parkinson model and proposes a new mechanism-of-action. Active Ret overexpression rescues muscle degeneration and mitochondrial morphology in muscles and dopamine neurons in Pink1 mutant Drosophila. In human neuroblastoma cells, GDNF treatment rescues mitochondrial fragmentation caused by Pink1 knockdown. Ret signaling improves mitochondrial respiration and activity of complex I, providing a potential novel mechanism for the protective effect of GDNF/Ret. Abstract Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN)(2B)) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN)(2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD

    Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    Full text link
    Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle and, depending on the pressure drop between inlet and outlet, vapor formation underneath the corner of the sack-wall is observed. The circumstances of cavitation formation are investigated and it is found that the local bulk pressure and mean stress are insufficient to explain the phenomenon. Results obtained in this study strongly suggest that the viscous stress, interfacial contributions to the local pressure, and the Laplace pressure are relevant to the opening of a vapor cavity. This can be described by a generalization of Joseph's criterion that includes these contributions. A macroscopic investigation measuring mass flow rate behavior and discharge coefficient was also performed. As theoretically predicted, mass flow rate increases linearly with the square root of the pressure drop. However, when cavitation occurs, the mass flow growth rate is reduced and eventually it collapses into a choked flow state. In the cavitating regime, as theoretically predicted and experimentally verified, the discharge coefficient grows with the Nurick cavitation number

    Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields

    Get PDF
    The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90 degrees. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal

    Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model

    Get PDF
    Mutations in the gene encoding the E3 ubiquitin ligase parkin (PARK2) are responsible for the majority of autosomal recessive parkinsonism. Similarly to other knockout mouse models of PD-associated genes, parkin knockout mice do not show a substantial neuropathological or behavioral phenotype, while loss of parkin in Drosophila melanogaster leads to a severe phenotype, including reduced lifespan, apoptotic flight muscle degeneration and male sterility. In order to study the function of parkin in more detail and to address possible differences in its role in different species, we chose Danio rerio as a different vertebrate model system.We first cloned zebrafish parkin to compare its biochemical and functional aspects with that of human parkin. By using an antisense knockdown strategy we generated a zebrafish model of parkin deficiency (knockdown efficiency between 50% and 60%) and found that the transient knockdown of parkin does not cause morphological or behavioral alterations. Specifically, we did not observe a loss of dopaminergic neurons in parkin-deficient zebrafish. In addition, we established transgenic zebrafish lines stably expressing parkin by using a Gal4/UAS-based bidirectional expression system. While parkin-deficient zebrafish are more vulnerable to proteotoxicity, increased parkin expression protected transgenic zebrafish from cell death induced by proteotoxic stress.Similarly to human parkin, zebrafish parkin is a stress-responsive protein which protects cells from stress-induced cell death. Our transgenic zebrafish model is a novel tool to characterize the protective capacity of parkin in vivo

    Development and External Validation of a Deep Learning Algorithm to Identify and Localize Subarachnoid Hemorrhage on CT Scans

    Full text link
    OBJECTIVE In medical imaging, a limited number of trained deep learning algorithms have been externally validated and released publicly. We hypothesized that a deep learning algorithm can be trained to identify and localize subarachnoid haemorrhage (SAH) on head computed tomography (CT) scans, and that the trained model performs satisfactorily when tested using external and real-world data. METHODS We used non-contrast head CT images of patients admitted Helsinki University Hospital between 2012 and 2017. We manually segmented (i.e. delineated) SAH on 90 head CT scans, and used the segmented CT scans together with 22 negative (no SAH) control CT scans in training an open-source convolutional neural network (U-Net) to identify and localize SAH. We then tested the performance of the trained algorithm by using external datasets (137 SAH and 1242 control cases) collected in two foreign countries, and also by creating a dataset of consecutive emergency head CT scans (8 SAH and 511 control cases) performed during on call hours in 5 different domestic hospitals in September 2021. We assessed the algorithm's capability to identify SAH by calculating patient- and slice-level performance metrics, such as sensitivity and specificity. RESULTS In the external validation set of 1379 cases, the algorithm identified 136 out of 137 SAH cases correctly (sensitivity 99.3%, specificity 63.2%). Of the 49064 axial head CT slices, the algorithm identified and localized SAH in 1845 out of 2110 slices with SAH (sensitivity 87.4%, specificity 95.3%). Of 519 consecutive emergency head CT scans imaged in September 2021, the algorithm identified all 8 SAH cases correctly (sensitivity 100.0%, specificity 75.3%). The slice-level (27167 axial slices in total) sensitivity and specificity were 87.3% and 98.8%, as the algorithm identified and localized SAH in 58 out of 77 slices with SAH. The performance of the algorithm can be tested on through a webservice. CONCLUSIONS We show that the shared algorithm identifies SAH cases with a high sensitivity, and that the slice-level specificity is high. In addition to openly sharing a high-performing deep learning algorithm, our work presents infrequently used approaches in designing, training, testing and reporting deep learning algorithms developed for medical imaging diagnostics. CLASSIFICATION OF EVIDENCE This study provides Class III evidence a deep learning algorithm correctly identifies the presence of subarachnoid hemorrhage on CT scan

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    Magnetostatic interactions in a natural magnetite-ulvospinel system

    Get PDF
    [ 1] Magnetostatic interactions have been investigated in anintergrown material consisting of similar to 200-nm magnetite blocksseparated by similar to 30-nm-wide ulvospinel lamellae. First-orderreversal curve (FORC) measurements provide a direct measure of theinteraction fields, giving a value for the full width at half maximu
    corecore