875 research outputs found

    Prisoner No. 28072 and the Federation

    Get PDF

    The Correlation between X-ray spectral slope and FeKalpha line energy in radio-quiet active galactic nuclei

    Full text link
    A significant correlation between FeKalpha line energy and X-ray spectral slope has been discovered among radio-quiet active galactic nuclei. The ionization stage of the bulk of the FeKalpha emitting material is not the same in all active galactic nuclei and is related to the shape of the X-ray continua. Active galactic nuclei with a steep X-ray spectrum tend to have a fluorescence FeKalpha line from highly ionized material. In the narrow-line Seyfert 1 galaxies with steeper X-ray spectrum (Gamma_X > 2.1), the FeKalpha line originates from highly ionized material. In the Seyfert 1 galaxies and quasars with flatter X-ray spectrum (Gamma_X < 2.1), bulk of the FeKalpha emission arises from near neutral or weakly ionized material. The correlation is an important observational characteristic related to the accretion process in radio quiet active galactic nuclei and is driven by a fundamental physical parameter which is likely to be the accretion rate relative to the Eddington rate.Comment: 4 pages, To apear in ApJ Letter

    Accounting for Multiple Comparisons in a Genome-Wide Association Study (GWAS)

    Get PDF
    Background As we enter an era when testing millions of SNPs in a single gene association study will become the standard, consideration of multiple comparisons is an essential part of determining statistical significance. Bonferroni adjustments can be made but are conservative due to the preponderance of linkage disequilibrium (LD) between genetic markers, and permutation testing is not always a viable option. Three major classes of corrections have been proposed to correct the dependent nature of genetic data in Bonferroni adjustments: permutation testing and related alternatives, principal components analysis (PCA), and analysis of blocks of LD across the genome. We consider seven implementations of these commonly used methods using data from 1514 European American participants genotyped for 700,078 SNPs in a GWAS for AIDS. Results A Bonferroni correction using the number of LD blocks found by the three algorithms implemented by Haploview resulted in an insufficiently conservative threshold, corresponding to a genome-wide significance level of α = 0.15 - 0.20. We observed a moderate increase in power when using PRESTO, SLIDE, and simpleℳ when compared with traditional Bonferroni methods for population data genotyped on the Affymetrix 6.0 platform in European Americans (α = 0.05 thresholds between 1 × 10-7 and 7 × 10-8). Conclusions Correcting for the number of LD blocks resulted in an anti-conservative Bonferroni adjustment. SLIDE and simpleℳ are particularly useful when using a statistical test not handled in optimized permutation testing packages, and genome-wide corrected p-values using SLIDE, are much easier to interpret for consumers of GWAS studies

    4U 0115+63 from RXTE and INTEGRAL Data: Pulse Profile and Cyclotron Line Energy

    Full text link
    We analyze the observations of the transient X-ray pulsar 4U 0115+63 with the RXTE and INTEGRAL observatories in a wide X-ray (3-100 keV) energy band during its intense outbursts in 1999 and 2004. The energy of the fundamental harmonic of the cyclotron resonance absorption line near the maximum of the X-ray flux from the source (luminosity range 5x10^{37} - 2x10^{38} erg/s) is ~11 keV. When the pulsar luminosity falls below ~5x10^{37} erg/s, the energy of the fundamental harmonic is displaced sharply toward the high energies, up to ~16 keV. Under the assumption of a dipole magnetic field configuration, this change in cyclotron harmonic energy corresponds to a decrease in the height of the emitting region by ~2 km, while other spectral parameters, in particular, the cutoff energy, remain essentially constant. At a luminosity ~7x10^{37} erg/s, four almost equidistant cyclotron line harmonics are clearly seen in the spectrum. This suggests that either the region where the emission originates is compact or the emergent spectrum from different (in height) segments of the accretion column is uniform. We have found significant pulse profile variations with energy, luminosity, and time. In particular, we show that the profile variations from pulse to pulse are not reduced to a simple modulation of the accretion rate specified by external conditions.Comment: 30 pages, 13 figures, Astronomy Letters, 33, 368 (2007

    Role of Exonic Variation in Chemokine Receptor Genes on AIDS: CCRL2 F167Y Association with Pneumocystis Pneumonia

    Get PDF
    Chromosome 3p21–22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 andCCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs) in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21) and CCR8 and CX3CR1 (at 3p22), the majority of which were non-synonymous. The individual SNPs were tested for their effects on disease progression and outcomes in five treatment-naïve HIV-1/AIDS natural history cohorts. In addition to the known CCR5 and CCR2associations, significant associations were identified for CCR3, CCR8, and CCRL2 on progression to AIDS. A multivariate survival analysis pointed to a previously undetected association of a non-conservative amino acid change F167Y in CCRL2 with AIDS progression: 167F is associated with accelerated progression to AIDS (RH = 1.90, P = 0.002, corrected). Further analysis indicated that CCRL2-167F was specifically associated with more rapid development of pneumocystis pneumonia (PCP) (RH = 2.84, 95% CI 1.28–6.31) among four major AIDS–defining conditions. Considering the newly defined role of CCRL2 in lung dendritic cell trafficking, this atypical chemokine receptor may affect PCP through immune regulation and inducing inflammation

    Effects of human TRIM5α polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection

    Get PDF
    AbstractTRIM5α acts on several retroviruses, including human immunodeficiency virus (HIV-1), to restrict cross-species transmission. Using natural history cohorts and tissue culture systems, we examined the effect of polymorphism in human TRIM5α on HIV-1 infection. In African Americans, the frequencies of two non-coding SNP variant alleles in exon 1 and intron 1 of TRIM5 were elevated in HIV-1-infected persons compared with uninfected subjects. By contrast, the frequency of the variant allele encoding TRIM5α 136Q was relatively elevated in uninfected individuals, suggesting a possible protective effect. TRIM5α 136Q protein exhibited slightly better anti-HIV-1 activity in tissue culture than the TRIM5α R136 protein. The 43Y variant of TRIM5α was less efficient than the H43 variant at restricting HIV-1 and murine leukemia virus infections in cultured cells. The ancestral TRIM5 haplotype specifying no observed variant alleles appeared to be protective against infection, and the corresponding wild-type protein partially restricted HIV-1 replication in vitro. A single logistic regression model with a permutation test indicated the global corrected P value of <0.05 for both SNPs and haplotypes. Thus, polymorphism in human TRIM5 may influence susceptibility to HIV-1 infection, a possibility that merits additional evaluation in independent cohorts

    Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    Get PDF
    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding

    Genetic Factors Leading to Chronic Epstein–Barr Virus Infection and Nasopharyngeal Carcinoma in South East China: Study Design, Methods and Feasibility

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a complex disease caused by a combination of Epstein-Barr virus chronic infection, the environment and host genes in a multi-step process of carcinogenesis. The identity of genetic factors involved in the development of chronic Epstein-Barr virus infection and NPC remains elusive, however. Here, we describe a two-phase, population-based, case-control study of Han Chinese from Guangxi province, where the NPC incidence rate rises to a high of 25-50 per 100,000 individuals. Phase I, powered to detect single gene associations, enrolled 984 subjects to determine feasibility, to develop infrastructure and logistics and to determine error rates in sample handling. A microsatellite screen of Phase I study participants, genotyped for 319 alleles from 34 microsatellites spanning an 18-megabase region of chromosome 4 (4p15.1-q12), previously implicated by a linkage analysis of familial NPC, found 14 alleles marginally associated with developing NPC or chronic immunoglobulin A production (p = 0.001-0.03). These associations lost significance after applying a correction for multiple tests. Although the present results await confirmation, the Phase II study population has tripled patient enrolment and has included environmental covariates, offering the potential to validate this and other genomic regions that influence the onset of NPC

    In search of the authentic nation: landscape and national identity in Canada and Switzerland

    Get PDF
    While the study of nationalism and national identity has flourished in the last decade, little attention has been devoted to the conditions under which natural environments acquire significance in definitions of nationhood. This article examines the identity-forming role of landscape depictions in two polyethnic nation-states: Canada and Switzerland. Two types of geographical national identity are identified. The first – what we call the ‘nationalisation of nature’– portrays zarticular landscapes as expressions of national authenticity. The second pattern – what we refer to as the ‘naturalisation of the nation’– rests upon a notion of geographical determinism that depicts specific landscapes as forces capable of determining national identity. The authors offer two reasons why the second pattern came to prevail in the cases under consideration: (1) the affinity between wild landscape and the Romantic ideal of pure, rugged nature, and (2) a divergence between the nationalist ideal of ethnic homogeneity and the polyethnic composition of the two societies under consideration

    Student Learning Outcomes Poster Session for CSB/SJU Joint Board of Trustees Meeting, December 5th, 2014

    Get PDF
    A faculty and student poster session was held focusing on student learning outcomes at the December 5th, 2014 joint Board of Trustee meeting. The posters focused on using assessment of student learning to improve teaching and learning and covered student learning outcomes at the course, departmental, and institutional levels
    corecore