74 research outputs found

    Pain after Whole-Body Vibration Exposure is Frequency Dependent and Independent of the Resonant Frequency: Lessons from an in vivo Rat Model

    Get PDF
    This is the author accepted manuscript. The final version is available from ASME via the DOI in this recordData Availability: Supporting datasets have been uploaded as part of the supplementary material.Occupational whole-body vibration (WBV) increases the risk of developing low back and neck pain; yet, there has also been an increased use of therapeutic WBV in recent years. Although the resonant frequency (fr) of the spine decreases as the exposure acceleration increases, effects of varying the vibration profile, including peak-to-peak displacement (sptp), root mean squared acceleration (arms) and frequency (f), on pain onset are not known. An established in-vivo rat model of WBV was used to characterize the resonance of the spine using sinusoidal sweeps. The relationship between arms and fr was defined and implemented to assess behavioral sensitivity - a proxy for pain. Five groups were subjected to a single 30-minute exposure, each with a different vibration profile, and a sham group underwent only anaesthesia exposure. The behavioral sensitivity was assessed at baseline and for 7 days following WBV-exposure. Only WBV at 8Hz induced behavioral sensitivity, and the higher arms exposure at 8Hz led to a more robust pain response. These results suggest that the development of pain is frequency-dependent, but further research into the mechanisms leading to pain are warranted to fully understand which WBV profiles may be detrimental or beneficial.Department of DefenseCatherine Sharpe Foundatio

    Spine system equivalence: A new protocol for standardized multi-axis comparison tests

    Get PDF
    This is the final version of the paper.Accurately replicating the in-vivo loads of the spine is a critical aspect of in-vitro spine testing, but the complexity of this structure renders this challenging. The design and control capabilities of multi-axis spine systems vary considerably, and though recommendations have been made [1, 2], standardized in-vitro methods have not yet been established. As such, it is often difficult to compare different biomechanical studies [3]. The aim of this study was to use international standards [4, 5], and spine testing recommendations [1-3] to develop a standardized protocol for the evaluation of different multi-axis spinal test systems. The protocol was implemented on three six-axis spine systems, and the data used to establish stiffness and phase angle limits. [...]This research was supported by the Catherine Sharpe Foundation, the Enid Linder Foundation, the Higher Education Innovation Fund, and the University of Bath Alumni Fund

    The equivalence of multi-axis spine systems: Recommended stiffness limits using a standardized testing protocol

    Get PDF
    Author's accepted manuscriptFinal version available from Elsevier via the DOI in this recordThe complexity of multi-axis spine testing often makes it challenging to compare results from different studies. The aim of this work was to develop and implement a standardized testing protocol across three six-axis spine systems, compare them, and provide stiffness and phase angle limits against which other test systems can be compared. Standardized synthetic lumbar specimens (n = 5), comprising three springs embedded in polymer at each end, were tested on each system using pure moments in flexion–extension, lateral bending, and axial rotation. Tests were performed using sine and triangle waves with an amplitude of 8 Nm, a frequency of 0.1 Hz, and with axial preloads of 0 and 500 N. The stiffness, phase angle, and R2 value of the moment against rotation in the principal axis were calculated at the center of each specimen. The tracking error was adopted as a measure of each test system to minimize non-principal loads, defined as the root mean squared difference between actual and target loads. All three test systems demonstrated similar stiffnesses, with small (<14%) but significant differences in 4 of 12 tests. More variability was observed in the phase angle between the principal axis moment and rotation, with significant differences in 10 of 12 tests. Stiffness and phase angle limits were calculated based on the 95% confidence intervals from all three systems. These recommendations can be used with the standard specimen and testing protocol by other research institutions to ensure equivalence of different spine systems, increasing the ability to compare in vitro spine studies.This research was completed with the support of the Catherine Sharpe Foundation, the Enid Linder Foundation, and the University of Bath Alumni Fun

    Altered postural sway in patients suffering from non-specific neck pain and whiplash associated disorder - A systematic review of the literature

    Get PDF
    To assess differences in center of pressure (COP) measures in patients suffering from non-specific neck pain (NSNP) or whiplash-associated disorder (WAD) compared to healthy controls and any relationship between changes in postural sway and the presence of pain, its intensity, previous pain duration and the perceived level of disability. Summary of Background data: Over the past 20 years, the center of pressure (COP) has been commonly used as an index of postural stability in standing. While several studies investigated COP excursions in neck pain and WAD patients and compared these to healthy individuals, no comprehensive analysis of the reported differences in postural sway pattern exists. Search methods: Six online databases were systematically searched followed by a manual search of the retrieved papers. Selection Criteria: Papers comparing COP measures derived from bipedal static task conditions on a force plate of non-specific neck pain and WAD sufferers to those of healthy controls. Data collection and analysis: Two reviewers independently screened titles and abstracts for relevance. Screening for final inclusion, data extraction and quality assessment were carried out with a third reviewer to reconcile differences

    The transition of reported pain in different body regions – a one-year follow-up study

    Get PDF
    BACKGROUND: The course of pain at a specific region such as the lower back has previously been shown as well as for generalized pain. However we have not found any report on the course of pain from various different specific regions. The aim of this investigation was to study the one-year transition of reported pain in different body locations. METHODS: From a general population 14555 men and women, 46–68 years, responded to an extensive health questionnaire including the standardized Nordic questionnaire. The population represented 27% of the total population within the age group in Malmö, Sweden. At the one year follow-up 12607 responded to the questionnaire, yielding a response rate of 87%. The one year prevalence of long-lasting pain and the pattern of pain reporting from different regions were studied for men and women. RESULTS: The one-year prevalence of long-lasting neck pain was 14% (95% CI 13–15) among men and 25% (95% CI 24–26) among women at baseline and 15% (95% CI 14–16) for the men and 23% (95% CI 22–24) for the women at follow-up. Of those reporting neck pain "all the time" at baseline, 48% of the men and 54% of the women also reported neck pain "all the time" at the one-year follow-up. At the follow-up neck pain was reported as present "often" by 43% of the men and 47% of the women who reported neck pain "often" at baseline. Similar transition pattern were found for neck, shoulders, elbow/wrist/hand and lower back symptoms, as well as consistent prevalence rates. CONCLUSION: The one-year transition pattern of reported pain was similar in different body regions and among men and women. Furthermore the prevalence rates of long-lasting pain in the population were consistent at baseline and the follow-up. The findings of similar transition patterns support the interpretation of long-lasting pain as a generalized phenomenon rather than attributed to specific exposure. This may have implications for future pain research

    Modification of neuropathic pain sensation through microglial ATP receptors

    Get PDF
    Neuropathic pain that typically develops when peripheral nerves are damaged through surgery, bone compression in cancer, diabetes, or infection is a major factor causing impaired quality of life in millions of people worldwide. Recently, there has been a rapidly growing body of evidence indicating that spinal glia play a critical role in the pathogenesis of neuropathic pain. Accumulating findings also indicate that nucleotides play an important role in neuron-glia communication through P2 purinoceptors. Damaged neurons release or leak nucleotides including ATP and UTP to stimulate microglia through P2 purinoceptors expressing on microglia. It was shown in an animal model of neuropathic pain that microglial P2X4 and P2X7 receptors are crucial in pain signaling after peripheral nerve lesion. In this review, we describe the modification of neuropathic pain sensation through microglial P2X4 and P2X7, with the possibility of P2Y6 and P2Y12 involvement

    Deceleration during 'real life' motor vehicle collisions – a sensitive predictor for the risk of sustaining a cervical spine injury?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The predictive value of trauma impact for the severity of whiplash injuries has mainly been investigated in sled- and crash-test studies. However, very little data exist for real-life accidents. Therefore, the predictive value of the trauma impact as assessed by the change in velocity of the car due to the collision (ΔV) for the resulting cervical spine injuries were investigated in 57 cases after real-life car accidents.</p> <p>Methods</p> <p>ΔV was determined for every car and clinical findings related to the cervical spine were assessed and classified according to the Quebec Task Force (QTF).</p> <p>Results</p> <p>In our study, 32 (56%) subjects did not complain about symptoms and were therefore classified as QTF grade 0; 25 (44%) patients complained of neck pain: 8 (14%) were classified as QTF grade I, 6 (10%) as QTF grade II, and 11 (19%) as QTF grade IV. Only a slight correlation (r = 0.55) was found between the reported pain and ΔV. No relevant correlation was found between ΔV and the neck disability index (r = 0.46) and between ΔV and the QTF grade (r = 0.45) for any of the collision types. There was no ΔV threshold associated with acceptable sensitivity and specificity for the prognosis of a cervical spine injury.</p> <p>Conclusion</p> <p>The results of this study indicate that ΔV is not a conclusive predictor for cervical spine injury in real-life motor vehicle accidents. This is of importance for surgeons involved in medicolegal expertise jobs as well as patients who suffer from whiplash-associated disorders (WADs) after motor vehicle accidents.</p> <p>Trial registration</p> <p>The study complied with applicable German law and with the principles of the Helsinki Declaration and was approved by the institutional ethics commission.</p

    Incidence, severity, aetiology and type of neck injury in men's amateur rugby union: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a paucity of epidemiological data on neck injury in amateur rugby union populations. The objective of this study was to determine the incidence, severity, aetiology and type of neck injury in Australian men's amateur rugby union.</p> <p>Methods</p> <p>Data was collected from a cohort of 262 participants from two Australian amateur men's rugby union clubs via a prospective cohort study design. A modified version of the Rugby Union Injury Report Form for Games and Training was used by the clubs physiotherapist or chiropractor in data collection.</p> <p>Results</p> <p>The participants sustained 90 (eight recurrent) neck injuries. Exposure time was calculated at 31143.8 hours of play (12863.8 hours of match time and 18280 hours of training). Incidence of neck injury was 2.9 injuries/1000 player-hours (95%CI: 2.3, 3.6). As a consequence 69.3% neck injuries were minor, 17% mild, 6.8% moderate and 6.8% severe. Neck compression was the most frequent aetiology and was weakly associated with severity. Cervical facet injury was the most frequent neck injury type.</p> <p>Conclusions</p> <p>This is the first prospective cohort study in an amateur men's rugby union population since the inception of professionalism that presents injury rate, severity, aetiology and injury type data for neck injury. Current epidemiological data should be sought when evaluating the risks associated with rugby union football.</p

    Neuropathic Pain Phenotype Does Not Involve the NLRP3 Inflammasome and Its End Product Interleukin-1β in the Mice Spared Nerve Injury Model.

    Get PDF
    The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS

    ATP receptors in pain sensation: Involvement of spinal microglia and P2X4 receptors

    Get PDF
    There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. At first, it was thought that ATP was simply involved in acute pain, since ATP is released from damaged cells and excites directly primary sensory neurons by activating their receptors. However, neither blocking P2X/Y receptors pharmacologically nor suppressing the expression of P2X/Y receptors molecularly in sensory neurons or in the spinal cord had an effect on acute physiological pain. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in pathological pain states, particularly in neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. An important advance in our understanding of the mechanisms involved in neuropathic pain has been made by a recent work demonstrating the crucial role of ATP receptors (i.e., P2X3 and P2X4 receptors). In this review, we summarize the role of ATP receptors, particularly the P2X4 receptor, in neuropathic pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of ATP receptors including P2X4 receptors may lead to new strategies for the management of neuropathic pain
    corecore