16 research outputs found

    Taking One Step Back in Familial Hypercholesterolemia:STAP1 Does Not Alter Plasma LDL (Low-Density Lipoprotein) Cholesterol in Mice and Humans

    Get PDF
    International audienceSTAP1, encoding for STAP1 (signal transducing adaptor family member 1), has been reported as a candidate gene associated with familial hypercholesterolemia. Unlike established familial hypercholesterolemia genes, expression of STAP1 is absent in liver but mainly observed in immune cells. In this study, we set out to validate STAP1 as a familial hypercholesterolemia gene. Approach and Results: A whole-body Stap1 knockout mouse model (Stap1 -/ - ) was generated and characterized, without showing changes in plasma lipid levels compared with controls. In follow-up studies, bone marrow from Stap1 -/ - mice was transplanted to Ldlr -/ - mice, which did not show significant changes in plasma lipid levels or atherosclerotic lesions. To functionally assess whether STAP1 expression in B cells can affect hepatic function, HepG2 cells were cocultured with peripheral blood mononuclear cells isolated from heterozygotes carriers of STAP1 variants and controls. The peripheral blood mononuclear cells from STAP1 variant carriers and controls showed similar LDLR mRNA and protein levels. Also, LDL (low-density lipoprotein) uptake by HepG2 cells did not differ upon coculturing with peripheral blood mononuclear cells isolated from either STAP1 variant carriers or controls. In addition, plasma lipid profiles of 39 carriers and 71 family controls showed no differences in plasma LDL cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and lipoprotein(a) levels. Similarly, B-cell populations did not differ in a group of 10 STAP1 variant carriers and 10 age- and sex-matched controls. Furthermore, recent data from UK Biobank do not show association between STAP1 rare gene variants and LDL cholesterol

    Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction

    Get PDF
    Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.Peer reviewe

    Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis

    Get PDF
    The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of .Conclusion:Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.Peer reviewe

    Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects : a randomised double-blind placebo-controlled cross-over study

    Get PDF
    Objective Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. Design In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. Results A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. Conclusions A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity.Peer reviewe

    Fecal microbiota transplantation as tool to study the interrelation between microbiota composition and miRNA expression

    No full text
    The intestinal gut microbiota is important for human metabolism and immunity and can be influenced by many host factors. A recently emerged host factor is secreted microRNA (miRNA). Previously, it has been shown that secreted miRNAs can influence the growth of certain bacteria and conversely, that shifts in the microbiota can alter the composition of secreted miRNAs. Here, we sought to further investigate the interaction between the gut microbiota and secreted miRNAs by the use of fecal microbiota transplantation (FMT). Subjects with the metabolic syndrome received either an autologous (n = 4) or allogenic (n = 14) FMT. Fecal samples were collected at baseline and 6 weeks after FMT, from which the microbiome and miRNA composition were determined via 16S rRNA sequencing and miRNA sequencing, respectively. We observed a significant correlation between the fecal miRNA expression and microbiota composition, both before and after FMT. Our results suggest that the FMT-induced shift in microbiota altered the fecal miRNA profile, indicated by correlations between differentially abundant microbes and miRNAs. This idea of a shift in miRNA composition driven by changes in the microbiota was further strengthened by the absence of a direct effect of specific miRNAs on the growth of specific bacterial strains

    Fecal microbiota transplantation as tool to study the interrelation between microbiota composition and miRNA expression

    Get PDF
    The intestinal gut microbiota is important for human metabolism and immunity and can be influenced by many host factors. A recently emerged host factor is secreted microRNA (miRNA). Previously, it has been shown that secreted miRNAs can influence the growth of certain bacteria and conversely, that shifts in the microbiota can alter the composition of secreted miRNAs. Here, we sought to further investigate the interaction between the gut microbiota and secreted miRNAs by the use of fecal microbiota transplantation (FMT). Subjects with the metabolic syndrome received either an autologous (n = 4) or allogenic (n = 14) FMT. Fecal samples were collected at baseline and 6 weeks after FMT, from which the microbiome and miRNA composition were determined via 16S rRNA sequencing and miRNA sequencing, respectively. We observed a significant correlation between the fecal miRNA expression and microbiota composition, both before and after FMT. Our results suggest that the FMT-induced shift in microbiota altered the fecal miRNA profile, indicated by correlations between differentially abundant microbes and miRNAs. This idea of a shift in miRNA composition driven by changes in the microbiota was further strengthened by the absence of a direct effect of specific miRNAs on the growth of specific bacterial strains

    Compensatory intestinal immunoglobulin response after vancomycin treatment in humans

    No full text
    Intestinal immunoglobulins (Ig) are abundantly secreted antibodies that bind bacteria and bacterial components in the gut. This binding is considered to accelerate bacterial transit time and prevent the interaction of potentially immunogenic compounds with intestinal immune cells. Ig secretion is regulated by alterations in gut microbiome composition, an event rarely mapped in an intervention setting in humans. Here, we determined the intestinal and systemic Ig response to a major intervention in gut microbiome composition. Healthy humans and humans with metabolic syndrome received oral vancomycin 500 mg four times per day for 7 days. Coinciding with a vancomycin-induced increase in Gram-negative bacteria, fecal levels of the immunogenic bacterial components lipopolysaccharide (LPS) and flagellin drastically increased. Intestinal antibodies (IgA and IgM) significantly increased, whereas peripheral antibodies (IgG, IgA, and IgM) were mostly unaffected by vancomycin treatment. Bacterial cell sorting followed by 16S rRNA sequencing revealed that the majority of Gram-negative bacteria, including opportunistic pathogens, were IgA-coated after the intervention. We suggest that the intestinal Ig response after vancomycin treatment prevents the intrusion of pathogens and bacterial components into systemic sites

    Compensatory intestinal antibody response against pro-inflammatory microbiota after bariatric surgery

    No full text
    Obesity and type 2 diabetes (T2D) are growing burdens for individuals and the health-care system. Bariatric surgery is an efficient, but drastic treatment to reduce body weight, normalize glucose values, and reduce low-grade inflammation. The gut microbiome, which is in part controlled by intestinal antibodies, such as IgA, is involved in the development of both conditions. Knowledge of the effect of bariatric surgery on systemic and intestinal antibody response is limited. Here, we determined the fecal antibody and gut microbiome response in 40 T2D and non-diabetic (ND) obese individuals that underwent bariatric surgery (N = 40). Body weight, fasting glucose concentrations and inflammatory parameters decreased after bariatric surgery, whereas pro-inflammatory bacterial species such as lipopolysaccharide (LPS), and flagellin increased in the feces. Simultaneously, concentrations of LPS- and flagellin-specific intestinal IgA levels increased with the majority of pro-inflammatory bacteria coated with IgA after surgery. Finally, serum antibodies decreased in both groups, along with a lower inflammatory tone. We conclude that intestinal rearrangement by bariatric surgery leads to expansion of typical pro-inflammatory bacteria, which may be compensated by an improved antibody response. Although further evidence and mechanistic insights are needed, we postulate that this apparent compensatory antibody response might help to reduce systemic inflammation by neutralizing intestinal immunogenic components and thereby enhance intestinal barrier function after bariatric surgery
    corecore