187 research outputs found

    Impact of BMI and waist circumference on epigenome-wide DNA methylation and identification of epigenetic biomarkers in blood: an EWAS in multi-ethnic Asian individuals

    Get PDF
    Background The prevalence of obesity and its related chronic diseases have been increasing especially in Asian countries. Obesity-related genetic variants have been identified, but these explain little of the variation in BMI. Recent studies reported associations between DNA methylation and obesity, mostly in non-Asian populations. Methods We performed an epigenome-wide association study (EWAS) on general adiposity (body mass index, BMI) and abdominal adiposity (waist circumference, WC) in 409 multi-ethnic Asian individuals and replicated BMI and waist-associated DNA methylation CpGs identified in other populations. The cross-lagged panel model and Mendelian randomization were used to assess the temporal relationship between methylation and BMI. The temporal relationship between the identified CpGs and inflammation and metabolic markers was also examined. Results EWAS identified 116 DNA methylation CpGs independently associated with BMI and eight independently associated with WC at false discovery rate P-FDR < 0.05 in 409 Asian samples. We replicated 110 BMI-associated CpGs previously reported in Europeans and identified six novel BMI-associated CpGs and two novel WC-associated CpGs. We observed high consistency in association direction of effect compared to studies in other populations. Causal relationship analyses indicated that BMI was more likely to be the cause of DNA methylation alteration, rather than the consequence. The causal analyses using BMI-associated methylation risk score also suggested that higher levels of the inflammation marker IL-6 were likely the consequence of methylation change. Conclusion Our study provides evidence of an association between obesity and DNA methylation in multi-ethnic Asians and suggests that obesity can drive methylation change. The results also suggested possible causal influence that obesity-related methylation changes might have on inflammation and lipoprotein levels

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Biological and clinical insights from genetics of insomnia symptoms

    Get PDF
    Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes. The underlying pathophysiological processes and causal relationships of insomnia with disease are poorly understood. Here we identified 57 loci for self-reported insomnia symptoms in the UK Biobank (n = 453,379) and confirmed their effects on self-reported insomnia symptoms in the HUNT Study (n = 14,923 cases and 47,610 controls), physician-diagnosed insomnia in the Partners Biobank (n = 2,217 cases and 14,240 controls), and accelerometer-derived measures of sleep efficiency and sleep duration in the UK Biobank (n = 83,726). Our results suggest enrichment of genes involved in ubiquitin-mediated proteolysis and of genes expressed in multiple brain regions, skeletal muscle, and adrenal glands. Evidence of shared genetic factors was found between frequent insomnia symptoms and restless legs syndrome, aging, and cardiometabolic, behavioral, psychiatric, and reproductive traits. Evidence was found for a possible causal link between insomnia symptoms and coronary artery disease, depressive symptoms, and subjective well-being

    Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis.

    Get PDF
    Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P<5 Ă— 10(-8)) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease

    RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies

    Get PDF
    Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±
    • …
    corecore