30 research outputs found

    Comparison of subgingival bacterial sampling with oral lavage for detection and quantification of periodontal pathogens by real-time polymerase chain reaction

    Get PDF
    Background: Saliva has been studied for the presence of subgingival pathogens in periodontitis patients. With the anaerobic culture technique, the discrepancy between salivary recovery and subgingival presence has been significant, which makes this approach not suitable for practical use in the microbial diagnosis of periodontitis patients. The real-time polymerase chain reaction (PCR) technique represents a very sensitive technique to detect and quantify bacterial pathogens. The aim of the study was to compare the presence and numbers of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythensis, Prevotella intermedia, and Micromonas micros in subgingival plaque and mouthwash samples by the anaerobic culture and real-time PCR techniques. Methods: Pooled subgingival plaque samples and 10-ml mouthwash samples were collected from 21 adult patients with periodontitis and analyzed by quantitative anaerobic culture and real-time PCR for A. actinomycetemcomitans, P. gingivalis, T. forsythensis, P. intermedia, and M. micros. Results: The detection frequency of A. actinomycetemcomitans, P. gingivalis, and T. forsythensis in subgingival plaque was identical by culture and real-time PCR and was higher for P. intermedia and M. micros by real-time PCR. The highest detection frequencies for the target bacteria were found in mouthwash samples by real-time PCR. The additional value of the real-time PCR to detect target bacteria was 38% for P. gingivalis, 73% for T. forsythensis, 77% for P. intermedia, and 71% for M. micros. The sensitivity to detect target species in mouthwash by real-time PCR was 100% for all test species except for P. intermedia (93.8%). Conclusions: Rapid detection and quantification of periodontal pathogens in mouthwash samples are possible by real-time PCR. The procedure is significantly less time-consuming than subgingival sampling with paper points. This approach to detect major periodontal pathogens in mouthwash samples may simplify microbial diagnosis in periodontitis patients and may be used to monitor periodontal treatment

    Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

    Get PDF
    Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome

    Anticancer Effects of 15d-Prostaglandin-J2 in Wild-Type and Doxorubicin-Resistant Ovarian Cancer Cells: Novel Actions on SIRT1 and HDAC

    Get PDF
    15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2), an arachidonic metabolite and a natural PPARγ agonist, is known to induce apoptosis in tumor cells. In this study, we investigated new therapeutic potentials of 15d-PGJ2 by determining its anticancer effects in wild-type and doxorubicin-resistant ovarian carcinoma cells. Despite high expression of resistance-inducing genes like MDR1, Bcl2 and Bcl-xl, 15d-PGJ2 strongly induced apoptosis in doxorubicin-resistant (A2780/AD) cells similar to the wild-type (A2780). This was found to be related to caspase-3/7- and NF-κB pathways but not to its PPARγ agonistic activity. 15d-PGJ2 also was able to reduce the doxorubicin resistance of A2780/AD cells at low doses as confirmed by the inhibition of gene expression of MDR1 (p-glycoprotein) and SIRT1 (a drug senescence gene). We also investigated effects of 15d-PGJ2 on cell migration and transformation using a wound-healing assay and morphological analyses, respectively. We found that 15d-PGJ2 inhibited migration most likely due to NF-κB inhibition and induced transformation of the round-shape A2780/AD cells into elongated epithelial cells due to HDAC1 inhibition. Using a 15d-PGJ2 analog, we found the mechanism of action of these new activities of 15d-PGJ2 on SIRT1 and HDAC1 gene expressions and enzyme activities. In conclusion, the present study demonstrates that 15d-PGJ2 has a high therapeutic potential to kill drug-resistant tumor cells and, the newly described inhibitory effects of this cyclo-oxygenase product on SIRT1 and HDAC will provide new opportunities for cancer therapeutics

    Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

    Get PDF
    Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome.info:eu-repo/semantics/publishedVersio

    Tongue coating:its characteristics and role in intra-oral halitosis and general health-a review

    Get PDF
    Tongue coating (TC), a grayish-white deposit on the tongue, is the main cause of intra-oral halitosis (IOH), a socially unacceptable condition. This review covers the general features of TC, including its formation and the factors that influence it. Volatile sulfur compounds (VSCs) are the principal elements of IOH, and TC and periodontal diseases are the two main sources of VSCs. This review covers the relationship between VSCs, TC, and periodontal disease. We comprehensively discuss the methods employed to quantify TC, its microbial composition, its influence on general health and its importance in general medicine

    Untargeted metabolomics of the bacterial tongue coating of intra-oral halitosis patients

    Get PDF
    Intra-oral halitosis (IOH) refers to an unpleasant odor from the oral cavity that is mainly caused by the tongue coating. Although the tongue coating microbiome is thought to play an essential role in IOH, the exact aetiology of IOH remains unclear. Here we investigated and compared the metabolic profiles of the tongue coating microbiomes of patients with IOH versus healthy control. The metabolic profiles were significantly different in IOH patients than in healthy controls. Healthy controls showed higher selenoamino acid and nicotinamide metabolism; these metabolic pathways are mainly involved in maintaining the oxidation-reduction potential and redox state. A total of 39 putative metabolites were associated with IOH. Remarkably, 3 of the metabolites, branched-chain fatty acids (BCFA), 3-fumaryl pyruvate, and acetyl phosphate, are potential key players in IOH. Interestingly, the predominant metabolite in IOH is BCFAs, which might underlie tongue coat formation. In addition, the key metabolite acetyl phosphate has a clear association with the hydrogen sulfide- (H2S-) producing metabolic pathway and anaerobic fermentation. These novel metabolomic findings provide insights into the formation of the tongue coating and the production of H2S, which causes bad breath

    The tongue microbiome in healthy subjects and patients with intraoral halitosis

    Get PDF
    Intra-oral halitosis (IOH) is an unpleasant odor emanating from the oral cavity. It is thought that the microbiota of the dorsal tongue coating plays a crucial role in this condition. The aim of the study was to investigate the composition of the tongue microbiome in subjects with and without IOH. A total of 26 subjects, 16 IOH patients and 10 healthy subjects were recruited based on their organoleptic score and volatile sulfur compound (VSC) measurements. The composition of the tongue microbiome was studied using the 16s amplicon sequencing of the V3-V4 hyper variable region with an Illumina MiSeq. The sequenced data were analyzed using QIIME, and the sequences obtained were distributed across 7 phyla, 27 genera and 825 operational taxonomic units (OTUs). At a higher taxon level, TM7 was associated with IOH patients whereas Gemellaceae was significantly abundant in the healthy subjects. At OTU level, we found several significant OTUs that differentiated the IOH patients from the controls. These included Aggregatibacter (OTUid 4335776), Aggregatibacter segnis (A. segnis), Campylobacter, Capnocytophaga, Clostridiales, Dialister, Leptotrichia, Parvimonas, Peptostreptococcus, Peptococcus, Prevotella, Selenomonas, SR1, Tannerella, TM7-3 and Treponema in the IOH group. In the control group, Aggregatibacter (OTUid 4363066), Haemophilus, Haemophilus parainfluenza (H. parainfluenza), Moryella, Oribacterium, Prevotella, several Streptococcus, Rothia dentocariosa (R. dentocariosa) and OTU from Gemellaceae were significantly abundant. Based on our observation, it was concluded that the bacterial qualitative composition of the IOH and the control group was almost the same, except for the few above-mentioned bacterial species and genera
    corecore