36 research outputs found

    In-situ growth optimization in focused electron-beam induced deposition

    Full text link
    We present the application of an evolutionary genetic algorithm for the in-situ optimization of nanostructures prepared by focused electron-beam-induced deposition. It allows us to tune the properties of the deposits towards highest conductivity by using the time gradient of the measured in-situ rate of change of conductance as fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO)6 as well as for post-treatment of Pt-C deposits obtained by dissociation of MeCpPt(Me)3. For W(CO)6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me)3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for further optimization or tuning of parameters for nanostrucures prepared by FEBID or related techniques

    A hybrid polymer/ceramic/semiconductor fabrication platform for high-sensitivity fluid-compatible MEMS devices with sealed integrated electronics

    Full text link
    Active microelectromechanical systems can couple the nanomechanical domain with the electronic domain by integrating electronic sensing and actuation mechanisms into the micromechanical device. This enables very fast and sensitive measurements of force, acceleration, or the presence of biological analytes. In particular, strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrically measurable signal in applications like atomic force microscopy, mass sensing, or molecular detection. However, the high Young's moduli of traditional cantilever materials (silicon or silicon nitride) limit the thickness of the devices, and therefore the deflection sensitivity that can be obtained for a specific spring constant. Using softer materials such as polymers as the structural material of the MEMS device would overcome this problem. However, these materials are incompatible with high-temperature fabrication processes often required to fabricate high quality electronic strain sensors. We introduce a pioneering solution that seamlessly integrates the benefits of polymer MEMS technology with the remarkable sensitivity of strain sensors, even under high-temperature deposition conditions. Cantilevers made using this technology are inherently fluid compatible and have shown up to 6 times lower force noise than their conventional counterparts. We demonstrate the benefits and versatility of this polymer/ceramic/semiconductor multi-layer fabrication approach with the examples of self-sensing AFM cantilevers, and membrane surface stress sensors for biomolecule detection

    Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

    Get PDF
    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors’ conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy

    Quasielastic 12C(e,e'p) Reaction at High Momentum Transfer

    Full text link
    We measured the 12C(e,e'p) cross section as a function of missing energy in parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV). At w=475 MeV, at the maximum of the quasielastic peak, there is a large continuum (E_m > 50 MeV) cross section extending out to the deepest missing energy measured, amounting to almost 50% of the measured cross section. The ratio of data to DWIA calculation is 0.4 for both the p- and s-shells. At w=330 MeV, well below the maximum of the quasielastic peak, the continuum cross section is much smaller and the ratio of data to DWIA calculation is 0.85 for the p-shell and 1.0 for the s-shell. We infer that one or more mechanisms that increase with ω\omega transform some of the single-nucleon-knockout into multinucleon knockout, decreasing the valence knockout cross section and increasing the continuum cross section.Comment: 14 pages, 7 figures, Revtex (multicol, prc and aps styles), to appear in Phys Rev

    Anticipated initial results from the NASA Mars 2020 Perseverance Rover Mastcam-Z multispectral, stereoscopic imaging investigation

    Get PDF
    Mastcam-Z is a high-heritage imaging system aboard NASA's Mars 2020 Perseverance rover that is based on the successful Mastcam investigation on the Mars Science Laboratory (MSL) Curiosity rover. It has all the capabilities of MSL Mastcam, and is augmented by a 4:1 zoom capability that will significantly enhance its stereo imaging performance for science, rover navigation, and in situ instrument and tool placement support. The Mastcam-Z camera heads are a matched pair of zoomable, focusable charge-coupled device (CCD) cameras that collect broad-band Red/green/blue (RGB) or narrow-band visible/near-infrared (VNIR; ~400-1000 nm) multispectral color data as well as direct solar images using neutral density filters. Each camera has a selectable field of view ranging from ~7.7° to ~31.9° diagonally, imaging at pixel scales from 67 to 283 µrad/pix (resolving features ~0.7 mm in size in the near field and ~3.3 cm in size at 100 m) from its position ~2 m above the surface on the Perseverance Remote Sensing Mast (RSM)

    The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation

    Get PDF
    Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission’s Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover’s Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover’s traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover’s sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions

    Optical Trapping and Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy of Submicron-Sized Particles

    No full text
    Chan JW, Winhold H, LAne SM, Huser T. Optical Trapping and Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy of Submicron-Sized Particles. IEEE J.Select. Top.Quanum Electron. 2005;11(4):858-863
    corecore