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Abstract

Background: Laser tweezers Raman spectroscopy (LTRS) is a novel, 

nondestructive, and label-free method that can be used to quantitatively measure 

changes in cellular activity in single living cells.  Here, we demonstrate its use to 

monitor changes in a population of E. coli cells that occur during overexpression of a 

protein, the extracellular domain of myelin oligodendrocyte glycoprotein (MOG(1-

120))

Methods: Raman spectra were acquired of individual E. coli cells suspended in 

solution and trapped by a single tightly focused laser beam. Overexpression of 

MOG(1-120) in transformed E. coli Rosetta-Gami (DE3)pLysS cells was induced by 

addition of isopropyl thiogalactoside (IPTG).  Changes in the peak intensities of the

Raman spectra from a population of cells were monitored and analyzed over a total 

duration of three hours. Data was also collected for concentrated purified MOG(1-

120) protein in solution, and the spectra compared with that obtained for the MOG(1-

120) expressing cells.

Results: Raman spectra of individual, living E. coli cells exhibit signatures due to 

DNA and protein molecular vibrations. Characteristic Raman markers associated with 

protein vibrations, such as 1257 cm-1, 1340 cm-1, 1453 cm-1 and 1660 cm-1, are 

shown to increase as a function of time following the addition of IPTG. Comparison of 

these spectra and the spectra of purified MOG protein indicates that the changes are

predominantly due to the induction of MOG protein expression. Protein expression 

was found to occur mostly within the second hour, with a 470% increase relative to 

the protein expressed in the first hour. A 230% relative increase between the second 

and third hour indicates that protein expression begins to level off within the third 

hour.
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Conclusion: It is demonstrated that LTRS has sufficient sensitivity for real-time, 

nondestructive, and quantitative monitoring of biological processes, such as protein 

expression, in single living cells. Such capabilities, which are not currently available 

in flow cytometry, open up new possibilities for analyzing cellular processes occurring 

in single microbial and eukaryotic cells.

Key terms: Raman spectroscopy, optical tweezers, laser trapping, protein 

expression, glycoprotein, E. coli, single cells
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Introduction

Many cells interact with their environment as independent entities and subtle 

differences in their responses can have dramatic consequences that relate to cancer 

induction and embryogenesis. Thus, performing noninvasive chemical analysis and 

monitoring long-term dynamic changes in metabolic processes of single living cells 

are capabilities that have been long sought after. Since individual cells may act 

spontaneously and can behave differently upon activation, it is often useful to obtain 

information from individual cells and determine distributions rather than only an 

averaged response. Acquiring real-time information of live single cell dynamics is 

also valuable for obtaining a better understanding of the biological response among a 

heterogeneous population of different cells. Current techniques, such as gel 

electrophoresis, blotting, mass spectrometry, and reverse transcription polymerase 

chain reaction (RT-PCR) lead to averaged biochemical data from many cells, 

whereas fluorescence microscopy and flow cytometry require monoclonal antibodies 

and exogenous fluorescent labels. The aim of this current work is to demonstrate the 

unique abilities of a novel laser based method known as laser tweezers Raman 

spectroscopy (LTRS) to monitor real-time biochemical changes of a single living cell 

upon induction of protein expression.

Raman spectroscopy is a powerful analytical tool that is based on the inelastic 

scattering of photons by molecular bonds. Photons that scatter off of a molecular 

bond and excite the bond to a higher vibrational state are known as Stokes-shifted 

Raman photons, and are registered as distinct red-shifted peaks in a Raman 

spectrum. Raman spectra are highly specific to the composition or chemical and 

physical state of a cell, and changes in these properties are reflected by peak shifts 

or intensity changes in the spectra. One of the main benefits of Raman spectroscopy 
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is that it is laser based, making it a noninvasive approach to interrogate single, living 

cells, provided that lower energy photons at moderate powers are used to minimize 

overall absorption by the cells1. More importantly for the work discussed here is that 

Raman spectroscopy possesses the level of sensitivity required to follow biochemical 

changes inside individual, living cells.

Several recent studies1-4 have demonstrated the benefit of combining optical 

trapping (i.e. laser tweezers) with confocal Raman spectroscopy for the analysis of 

micron-sized particles in solution. A single tightly focused laser beam can function as 

both a single beam optical trap to suspend micron-sized transparent particles near 

the laser focus and as the excitation source to obtain their Raman spectra in a highly 

efficient manner. When applied to living cells and microorganisms, this approach 

presents a method to rapidly analyze the biochemical composition of individual living 

cells in suspension. For example, LTRS has been applied to the rapid analysis of 

mixed populations of bacterial spores and bacteria2,5,6. It has been applied in the 

medical field to the analysis of lipoproteins7, synaptosomes8, and individual cancer 

cells9,10. In combination with micro-fluidic cell delivery, LTRS can also be used for 

label-free cell sorting6. To a lesser extent, monitoring single cell biological processes

with LTRS in real time, such as heat-denaturation of microorganisms11, the kinetic 

germination of bacterial spores12, and the biological state of cells4,13,14, has also been 

demonstrated.

Here, we focused on demonstrating the capability of LTRS to monitor the 

induction of protein expression in individual E. coli cells transformed with the gene for 

the extracellular domain of myelin oligodendrocyte glycoprotein (MOG(1-120)). MOG 

is a 26 kD to 28 kD integral membrane protein of the central nervous system

implicated as a target for auto aggressive antibodies in multiple sclerosis15. MOG (1-
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120) protein was chosen for our study because of its high expression level in E. coli

cells. Activation-dependent changes in the level of MOG protein expression can be 

followed in real time and at the single cell level by analyzing the Raman spectra of 

individual E. coli cells.  
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MATERIALS AND METHODS

Confocal Raman Microscope

A schematic of the optical setup is depicted in Figure 1. The laser beam of a 

30 mW helium-neon (He-Ne) laser (Spectra Physics) at 633 nm is directed through a 

bandpass filter (Omega Filters) to remove undesired plasma emissions from the laser 

beam. A telescope expands the beam diameter to roughly 6 mm to match the 

diameter of the input aperture of the microscope objective. The laser beam is 

introduced into an inverted optical microscope (Axiovert 200, Zeiss) equipped with a 

dichroic mirror and a 100x, 1.3 NA oil immersion objective (Plan-NEOFLUAR, Zeiss). 

The beam forms an optical trap at the laser focus and the Raman signals generated 

at the laser focus from a trapped cell are epi-detected, spatially filtered by a 100 µm 

diameter confocal pinhole, and sent through a 633 nm holographic notch filter (Kaiser 

Optical) for the rejection of the Rayleigh scattered light.  The Raman signals are 

directed into a spectrometer (Triax 320, Jobin-Yvon) equipped with a 1200 

grooves/mm grating blazed at 500nm and a liquid nitrogen cooled 1340 x 100 pixel 

back-illuminated CCD camera (Roper Scientific). Data is acquired using Winspec 

(Roper Scientific) computer software. Images of trapped cells are observed under 

white light illumination and imaged with a second CCD camera attached to the 

microscope.

Protein Expression and Purification

The nonglycosylated, extracellular domain of rat myelin oligodendrocyte 

glycoprotein (MOG(1-120)) has been previously cloned into a pET32 vector that 

codes for residues 1-120 with an additional Met residue at the N-Terminus derived 

from the vector and a LEHHHHHH-tag at the C-terminus for facilitating the 

purification. Expression levels of aproximately 10-15 mg/L of MOG(1-120) in Luria-
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Bertani (LB) broth are typically obtained in an E. coli Rosetta-Gami(DE3)pLysS host 

(Novagen). The expression E. coli host Rosetta-Gami(DE3)pLysS (Novagen) was 

used for its enhanced cytoplasmic disulfide bond formation and enhanced expression 

of eukaryotic proteins that contain codons rarely used in E. coli.

E. coli culture was diluted 1 to 100 into LB media containing100 µg/ml 

ampicillin and 34 µg/ml chloramphenicol and grown at 37 °C until the A600 value was 

0.6-0.8 (4-5 hours).  Protein expression was induced by addition of IPTG to a final 

concentration of 1.0 mM.  The cultures were grown for >5 hours at 37 °C and 

harvested by centrifugation (2600 G for 20 minutes at 4 °C).  

Bacteria pellets containing MOG(1-120) were resuspended in sonication buffer 

(100 mM Tris-HCl,  pH 8.0, 1M NaCl, 10 mM imidazole) with added protease 

inhibitors (1 Roche Complete, EDTA-free; Protease Inhibitor Cocktail Tablet/50 ml 

and Phenylmethanesulfonyl fluoride (PMSF) to 1 mM final concentration) .  Cells 

were lysed by sonication 4 times, each for 10 seconds with a 10 minute interval

between sonications, after which the insoluble cellular debris was pelleted by 

centrifugation (20,000 G for 30 minutes at 4 oC).  The resulting supernatant was 

bound to Ni-NTA-agarose column (Qiagen) by incubating 2 hours at 4 oC on an 

orbital rocker. The protein-agarose matrix was then loaded into a disposable 10 ml

column (Qiagen) and washed with two column volumes of 100 mM Tris-HCl, pH 8.0, 

1M NaCl, 10 mM imidazole, followed by a wash with the same buffer containing 30 

mM imidizole instead of 10 mM.  MOG was eluted off the column using the same 

buffer containing 90 mM imidizole and collected in 10, 2 ml fractions. The purity of 

MOG(1-120) protein in each fraction was determined by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS PAGE) with a major band at the expected 



10

molecular weight (14.4 kD) and a very minor band at ~32 kD corresponding to a 

dimer. The quantity of protein was determined by the Bradford method.

Raman Experiments

An initial experiment was performed to determine the spectral changes of E. 

coli cells before and after exposure to IPTG. Approximately 2 µL of an E. coli sample 

taken directly from the shaker was diluted with 100 µL of phosphate buffered saline 

(PBS) solution to ensure that only single cells are trapped without interference from 

neighboring cells. The samples were placed onto a microscope coverslip for Raman 

analysis. The time for acquiring each spectrum is typically 60-120 seconds per cell.  

Real-time monitoring of IPTG-induced protein expression of E. coli cells 

directly on the microscope were carried out using a glass bottom culture dish 

(DH3522, WillCo Wells) to hold the samples. A 3 mL PBS solution containing E. coli

cells is used in these measurements. The large volume of liquid ensures that the 

solution will not dry out during the three hour experiment. The metabolic activity of 

the cells is sustained in PBS solution for the duration of the experiment, but the 

bacteria are kept at near starving conditions. The solution in the culture dish is 

heated to 37°C with a micro incubation chamber (DH-35i, Warner Instruments) 

connected to a temperature controller (TC-344B, Warner Instruments) that maintains 

the temperature within 0.1°C from the set temperature. The micro incubation 

chamber is placed on the inverted microscope stage and an individual E. coli

bacterium is optically trapped in the culture dish. Typical laser powers used for 

optical trapping and Raman acquisition are ~10 mW. At time t=0, IPTG is added to 

the culture dish solution to a final IPTG concentration of 1 mM. Individual cells are 

trapped and Raman spectra are acquired every 2 minutes during the induction 

process for a total of 3 hours. 
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A spectrum of purified MOG(1-120) protein dissolved in PBS was recorded to 

determine its characteristic Raman markers, which can then be compared to 

changes observed in the induced E. coli spectra. The Raman spectra of MOG(1-120)

was obtained by focusing the laser beam into a 1 mM solution of the protein. It 

should be noted that at this concentration, the protein begins to aggregate in solution, 

so the laser beam was directed onto these regions identified by white light imaging 

on the CCD camera. 

All spectra were background subtracted by fitting the broad background to a 

third-order polynomial to remove undesired auto-fluorescence and background 

contributions. The spectra were normalized to the 1095 cm-1 peak, which is 

associated with the DNA backbone (O-P-O-) vibration. This peak is chosen because 

its intensity remains constant during the entire experiment, since the DNA content is 

not expected to change during MOG(1-120) expression. 
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Results

A comparison of the Raman spectra acquired for un-induced cells and cells 

incubated with IPTG is shown in Figure 2. Each spectrum consists of an average of 

20 different individual cells and has been background corrected and normalized. The 

data shows that the intensity of several Raman peaks located at 1257 cm-1, 1340

cm-1, 1453 cm-1 and 1660 cm-1 increase significantly following induction of the E. coli

cells. Other peaks such as the 785cm-1 and 1001cm-1 peak show no noticeable 

changes in intensity or shifts. The assignments of the Raman peaks found in the E. 

coli spectra are shown in Table 1. They are consistent with previously published 

results from work using Raman spectroscopy to characterize E. coli bacteria11.

A background-corrected Raman spectrum of MOG(1-120) protein in PBS 

solution is shown in Figure 3.  Several characteristic peaks at 1004 cm-1, 1257 cm-1, 

1340 cm-1, 1453 cm-1 and 1660 cm-1 are observed, suggesting that the increase in 

the Raman peaks at these wavelengths in the spectra of the IPTG-induced E. coli

cells are due to the expression of this protein. 

The evolution of the spectral changes in E. coli cells exposed to IPTG 

monitored over a 3 hour time period is depicted in Figure 4a. The data indicate that 

the 1257 cm-1, 1340 cm-1, 1453 cm-1 and 1660 cm-1 peaks all increase during the 3 

hours the cells are exposed to IPTG, with no noticeable changes in the other Raman 

peaks. Results from control experiments that monitor an uninduced cell over the 

same time frame indicate that there are no noticeable changes in the Raman spectra, 

as shown in Figure 4b. For example, the intensity change of the 1340 and 1453 cm-1

peaks after 3 hours is 0.043 and 0.017, which is considered to be negligible 

compared to the changes following induction. 
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Each spectrum at a given time point in Figure 4a comprises an average of 5 

spectra of 5 different cells. Since the acquisition time for a single cell spectrum is 2 

min., each averaged spectrum represents the changes in the cells that occur over a

10 min. time frame. The reason for conducting the experiment in this manner is to 

avoid any potential issues with laser damage from the optical trap. We have 

observed that trapping of a single cell for greater than 10 minutes induces spectral 

changes, which is depicted in Figure 5. The most noticeable changes are the 

decrease in intensities of several peaks, including the 647, 785, 1257, 1340, 1578, 

and 1660 cm-1 peaks. These Raman markers are associated with both DNA and 

proteins.  
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Discussion

Germane to the current study are the peaks located at 1257 cm-1, 1340 cm-1, 

1453 cm-1 and 1660 cm-1, which are all general Raman markers characteristic of 

proteins and are observed in the Raman spectra of MOG(1-120). These peaks are 

also shown to increase in intensity in the spectra of IPTG-induced E. coli cells. The 

1257cm-1 and 1660cm-1 peaks are assigned to the amide III and amide I vibrations, 

the 1340cm-1 peak is attributed to a protein C-H deformation, and the 1453cm-1 peak 

is due to CH2 protein deformation. 

The increase in peak intensities of these protein Raman modes for E. coli cells 

incubated with IPTG (Figure 2) confirms that these cells undergo a change of their 

intracellular protein concentration once protein expression is induced. We attribute 

these changes to the specific over-expression of the MOG(1-120) protein, which is 

confirmed by SDS-PAGE (Figure 6). The spectral changes are consistent and 

overlap with the Raman peaks obtained from the purified MOG(1-120) protein 

solution (Figure 3), which further indicate that MOG(1-120) protein expression is 

predominately the cause of the spectral changes. 

In addition, no changes were observed in the DNA peaks at 783 cm-1 and 

1578 cm-1. The constant intensity of the DNA peaks is consistent with the fact that 

induced cells do not exhibit growth and division and are primarily active in expressing 

the MOG(1-120) protein. This result also indicates that there is no spectral evidence 

of major damage to the cells as a result of laser exposure within the 2 minute 

acquisition time, since a previous study16 had reported that laser damaged cells 

exhibit a decrease in DNA peak intensity at 1578 cm-1. We have also observed 

similar spectral changes associated with DNA and protein Raman markers (Figure 5) 

as a result of the harmful effects of long-term laser exposure to the cells. In order to 
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avoid this deleterious effect in our experiments, different individual cells were probed 

for short durations (2 min.) in order to decrease the potential of laser damage. An 

average of these spectra was taken to yield the results shown in Figure 4a. An 

alternative method to reduce laser damage, as demonstrated by Xie et. al.1, would be 

the use of longer wavelength light (e.g. at 785 nm) and a power switching scheme, 

where the laser power is switched from low to high for cell trapping and Raman 

acquisition, respectively.

The results of these experiments show that real time measurements of the 

changes occurring in the induced E. coli cells can be monitored using the laser 

trapping Raman method (Figure 4). There is minimal change in the Raman spectra 

within the first hour (data not shown), indicating minimal expression of the protein 

immediately after induction. Significant increases in protein expression seem to occur 

only within the second hour and continue into the third hour after induction. The 

intensity changes for the 1257 cm-1, 1340 cm-1, 1453 cm-1 and 1660 cm-1 peaks are 

shown in Figure 6. The relative peak intensities of these peaks compared to the 1257 

cm-1 amide III protein peak after induction are 1, 1.34, 2.17, and 1.83, respectively. 

These ratios are similar to those obtained for the purified MOG(1-120) protein in 

Figure 3 (1, 1.33, 1.95, 1.75, relative to the 1257 cm-1 peak), which strongly suggest

that the changes in the E. coli spectra are indeed due to MOG(1-120) over-

expression. We estimate from the peak intensity values that the rate of protein 

expression is highest within the second hour, with a 470% increase in protein 

concentration when comparing the signal intensity at the one and two hour time 

points. The expression continues in the third hour, but the rate begins to level off, as 

evidenced by a 230% increase in protein levels between the second and third hour. 

To confirm that the change is not a response of the cells being kept at near starving 
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conditions in PBS solution, equivalent experiments were performed where cells were 

probed over a 3 hour time frame without the addition of IPTG. No changes in the 

DNA or protein Raman markers were observed, indicating that the cells remained 

viable for this time frame, and that the changes in the protein markers shown in 

Figures 5 and 6 are, in fact, associated with IPTG induction of the MOG protein 

expression. 
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Conclusion

We demonstrate the unique capabilities of LTRS to obtain label-free chemical 

information from individual living cells and monitor the temporal evolution of a 

biological process by using the IPTG-induced overexpression of the MOG(1-120)

protein in single transformed E. coli cells as a model system. We have shown that it 

is possible to use this method to non-invasively and quantitatively monitor protein 

expression at the single cell level over an extended period of time. Increases in 

Raman protein markers were clearly observed after induction of protein expression, 

which allowed a relative increase in protein concentration to be determined. This 

work sets the foundation for a number of additional experiments that are planned to 

follow biochemical changes in living microbial cells in real-time due to changes in 

their environment, e.g. gene expression after transitions from anaerobic to aerobic 

states. The current results also suggest that it should be possible to investigate 

changes induced in individual microbial cells after exposure to environmental 

hazards. In the future, modification of the LTRS system to utilize longer wavelength 

excitation light will further help to reduce laser-induced damage and enable a single 

cell to be monitored continuously for the entire 3 hours.
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Tables, Figures, and their Legends

Fig. 1 Schematic of a confocal LTRS setup. A He-Ne laser is focused into a sample 

with a high NA microscope objective. Raman signals are epi-detected, spatially 

filtered by a confocal pinhole and dispersed onto a liquid nitrogen cooled CCD 

camera attached to a spectrometer. 

Fig. 2 Averaged Raman spectra of E. coli bacteria before and after the induction of 

protein expression. The acquisition time for each spectrum was 120 seconds with an 

excitation power of 10mW at 633nm. The measurement was repeated for 20 cells 

and averaged. All spectra are background-subtracted and normalized to the 1095cm-

1 Raman peak.

Fig. 3 Raman spectrum of purified MOG protein. This spectrum is an average over 

four spectra and the acquisition time was 240 seconds respectively, with an 

excitation power of 10mw at 633nm. Each spectrum is obtained from a protein 

cluster, which is suspended in the laser focus; therefore the whole focal volume is 

filled with MOG. The relevant peaks are located at 1004cm-1, 1257cm-1, 1340cm-1, 

1453cm-1 and 1660cm-1.

Fig. 4  (a) Raman spectra of IPTG-induced E. coli show dynamic changes from an 

uninduced to an induced state over a three hour time period. The IPTG concentration 

in the probe sample is 1mM and the temperature is 37°C. Each spectrum is an 

average over 5 spectra of different E. coli cells. The acquisition time for each 

spectrum was 120 seconds with an excitation power of 10mW at 633nm. Every 

spectrum is background-subtracted and normalized to the 1095cm-1 DNA backbone 

peak. For clarity, also shown are the difference spectra at each time point, obtained 

by subtracting the start spectrum from the spectrum at one, two, and three hours. (b) 



19

Results from a control experiment showing that there is no significant change in the 

Raman spectra of uninduced cells before and after 3 hours. 

Fig. 5. Raman spectra of laser damaged E. coli cells compared with unmodified cells. 

The modified cells are exposed to the laser beam for 10 minutes. Each spectrum is 

an average of 5 individual cell spectra. The peaks that change are attributed to DNA 

and protein vibrations.

Fig. 6 SDS NuPAGE 4-12% gel of whole cell extracts from uninduced and induced 

for 3hr E. coli bacteria. The intense blue band in the induced E. coli bacteria is 

attributed to the expression of MOG protein.  For calibration, a standard protein 

solution with known molecular weights is run simultaneously and shown on the far 

left of the gel.

Fig. 7  Relative intensity change of the 1257cm-1, 1340cm-1, 1453cm-1 and 1660cm-1

peaks in the E. coli Raman spectra as a function of time after induction of MOG 

expression.

bledsoe2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
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Table 1. Raman peaks of E. coli cells and their assignments

Raman frequency (cm-1) Assignment

728 Adenine

783 Nucleic acids (C, T)

813 Tyrosine

857 Tyrosine

936 DNA backbone

1004 Phenylalanine

1095 DNA: O-P-O-

1126 p: C-N, C, T

1257 p: amide III

1340 Nucleic acids (A, G)

1453 p: C-H2 def., lipids

1660 Amide I
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.




