5 research outputs found

    Filaggrin Genotype Determines Functional and Molecular Alterations in Skin of Patients with Atopic Dermatitis and Ichthyosis Vulgaris

    Get PDF
    BACKGROUND: Several common genetic and environmental disease mechanisms are important for the pathophysiology behind atopic dermatitis (AD). Filaggrin (FLG) loss-of-function is of great significance for barrier impairment in AD and ichthyosis vulgaris (IV), which is commonly associated with AD. The molecular background is, however, complex and various clusters of genes are altered, including inflammatory and epidermal-differentiation genes. OBJECTIVE: The objective was to study whether the functional and molecular alterations in AD and IV skin depend directly on FLG loss-of-function, and whether FLG genotype determines the type of downstream molecular pathway affected. METHODS AND FINDINGS: Patients with AD/IV (n = 43) and controls (n = 15) were recruited from two Swedish outpatient clinics and a Swedish AD family material with known FLG genotype. They were clinically examined and their medical history recorded using a standardized questionnaire. Blood samples and punch biopsies were taken and trans-epidermal water loss (TEWL) and skin pH was assessed with standard techniques. In addition to FLG genotyping, the STS gene was analyzed to exclude X-linked recessive ichthyosis (XLI). Microarrays and quantitative real-time PCR were used to compare differences in gene expression depending on FLG genotype. Several different signalling pathways were altered depending on FLG genotype in patients suffering from AD or AD/IV. Disease severity, TEWL and pH follow FLG deficiency in the skin; and the number of altered genes and pathways are correlated to FLG mRNA expression. CONCLUSIONS: We emphasize further the role of FLG in skin-barrier integrity and the complex compensatory activation of signalling pathways. This involves inflammation, epidermal differentiation, lipid metabolism, cell signalling and adhesion in response to FLG-dependent skin-barrier dysfunction

    Genetic variation in the epidermal transglutaminase genes is not associated with atopic dermatitis.

    Get PDF
    BACKGROUND: Atopic dermatitis (AD) is a common chronic inflammatory skin disorder where epidermal barrier dysfunction is a major factor in the pathogenesis. The identification of AD susceptibility genes related to barrier dysfunction is therefore of importance. The epidermal transglutaminases (TGM1, TGM3 and TGM5) encodes essential cross-linking enzymes in the epidermis. OBJECTIVE: To determine whether genetic variability in the epidermal transglutaminases contributes to AD susceptibility. METHODS: Forty-seven single nucleotide polymorphisms (SNPs) in the TGM1, TGM3 and TGM5 gene region were tested for genetic association with AD, independently and in relation to FLG genotype, using a pedigree disequilibrium test (PDT) in a Swedish material consisting of 1753 individuals from 539 families. In addition, a German case-control material, consisting of 533 AD cases and 1996 controls, was used for in silico analysis of the epidermal TGM regions. Gene expression of the TGM1, TGM3 and TGM5 gene was investigated by relative quantification with Real Time PCR (qRT-PCR). Immunohistochemical (IHC) analysis was performed to detect TG1, TG3 and TG5 protein expression in the skin of patients and healthy controls. RESULTS: PDT analysis identified a significant association between the TGM1 SNP rs941505 and AD with allergen-specific IgE in the Swedish AD family material. However, the association was not replicated in the German case-control material. No significant association was detected for analyzed SNPs in relation to FLG genotype. TG1, TG3 and TG5 protein expression was detected in AD skin and a significantly increased TGM3 mRNA expression was observed in lesional skin by qRT-PCR. CONCLUSION: Although TGM1 and TGM3 may be differentially expressed in AD skin, the results from the genetic analysis suggest that genetic variation in the epidermal transglutaminases is not an important factor in AD susceptibility

    <i>TGM1</i>, <i>TGM3</i> and <i>TGM5</i> gene expression in the skin of AD patients and healthy controls.

    No full text
    <p>TGM transcript levels (A, E and I) of healthy controls (HC, n = 10) non lesional skin of AD patients (NL, n = 7) and lesional skin from AD patients (L, n = 10). Horizontal bars represent median values in each group and data is presented on a logaritmic scale. For IHC analysis of the TG protein expression, skin sections from nine AD patients and ten healthy controls were stained. Representative staining from one healthy control and one patient is shown in the figure for TG1 (B–D), TG3 (F–H) and TG5 (J–L) expression. Scale bar represents 50 µm.</p
    corecore