553 research outputs found

    Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry

    Full text link
    We report on a novel experiment to generate non-classical atomic states via quantum non-demolition (QND) measurements on cold atomic samples prepared in a high finesse ring cavity. The heterodyne technique developed for the QND detection exhibits an optical shot-noise limited behavior for local oscillator optical power of a few hundred \muW, and a detection bandwidth of several GHz. This detection tool is used in single pass to follow non destructively the internal state evolution of an atomic sample when subjected to Rabi oscillations or a spin-echo interferometric sequence.Comment: 23 page

    Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap

    Full text link
    We trap neutral ground-state rubidium atoms in a macroscopic trap based on purely electric fields. For this, three electrostatic field configurations are alternated in a periodic manner. The rubidium is precooled in a magneto-optical trap, transferred into a magnetic trap and then translated into the electric trap. The electric trap consists of six rod-shaped electrodes in cubic arrangement, giving ample optical access. Up to 10^5 atoms have been trapped with an initial temperature of around 20 microkelvin in the three-phase electric trap. The observations are in good agreement with detailed numerical simulations.Comment: 4 pages, 4 figure

    Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit

    Full text link
    Squeezing of quantum fluctuations by means of entanglement is a well recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between two-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for ~ 10^5 cold cesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A two-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared to a single color QND measurement.Comment: 6 pages+suppl, PNAS forma

    Tunable gauge potential for neutral and spinless particles in driven lattices

    Full text link
    We present a universal method to create a tunable, artificial vector gauge potential for neutral particles trapped in an optical lattice. The necessary Peierls phase of the hopping parameters between neighboring lattice sites is generated by applying a suitable periodic inertial force such that the method does not rely on any internal structure of the particles. We experimentally demonstrate the realization of such artificial potentials, which generate ground state superfluids at arbitrary non-zero quasi-momentum. We furthermore investigate possible implementations of this scheme to create tuneable magnetic fluxes, going towards model systems for strong-field physics

    A compact and robust diode laser system for atom interferometry on a sounding rocket

    Full text link
    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase

    Minimally-destructive detection of magnetically-trapped atoms using frequency-synthesised light

    Full text link
    We present a technique for atomic density measurements by the off-resonant phase-shift induced on a two-frequency, coherently-synthesised light beam. We have used this scheme to measure the column density of a magnetically trapped atom cloud and to monitor oscillations of the cloud in real time by making over a hundred non-destructive local density measurments. For measurements using pulses of 10,000-100,000 photons lasting ~10 microsecond, the precision is limited by statistics of the photons and the photodiode avalanche. We explore the relationship between measurement precision and the unwanted loss of atoms from the trap and introduce a figure of merit that characterises it. This method can be used to probe the density of a BEC with minimal disturbance of its phase.Comment: Submitted to New Journal of Physic
    corecore