457 research outputs found
Surgical management of gingival recession using autogenous soft tissue grafts
One of the chief goals of periodontal plastic surgery is establishment of ideal pink esthetics through the reconstruction of gingival recessions. A gold standard treatment approach for coverage of gingival recession with predictable esthetic outcomes is the transplantation of autogenous soft tissue grafts. Various surgical techniques can be used in combination with autogenous soft tissue grafts for gingival recession coverage
Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies
The binding energies of 29Si, 33S, and 36Cl have been measured with a
relative uncertainty using a flat-crystal spectrometer.
The unique features of these measurements are 1) nearly perfect crystals whose
lattice spacing is known in meters, 2) a highly precise angle scale that is
derived from first principles, and 3) a gamma-ray measurement facility that is
coupled to a high flux reactor with near-core source capability. The binding
energy is obtained by measuring all gamma-rays in a cascade scheme connecting
the capture and ground states. The measurements require the extension of
precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region,
a significant precision measurement challenge. The binding energies determined
from these gamma-ray measurements are consistent with recent highly accurate
atomic mass measurements within a relative uncertainty of .
The gamma-ray measurement uncertainties are the dominant contributors to the
uncertainty of this consistency test. The measured gamma-ray energies are in
agreement with earlier precision gamma-ray measurements.Comment: 13 pages, 4 figure
Transition-metal interactions in aluminum-rich intermetallics
The extension of the first-principles generalized pseudopotential theory
(GPT) to transition-metal (TM) aluminides produces pair and many-body
interactions that allow efficient calculations of total energies. In
aluminum-rich systems treated at the pair-potential level, one practical
limitation is a transition-metal over-binding that creates an unrealistic TM-TM
attraction at short separations in the absence of balancing many-body
contributions. Even with this limitation, the GPT pair potentials have been
used effectively in total-energy calculations for Al-TM systems with TM atoms
at separations greater than 4 AA. An additional potential term may be added for
systems with shorter TM atom separations, formally folding repulsive
contributions of the three- and higher-body interactions into the pair
potentials, resulting in structure-dependent TM-TM potentials. Towards this
end, we have performed numerical ab-initio total-energy calculations using VASP
(Vienna Ab Initio Simulation Package) for an Al-Co-Ni compound in a particular
quasicrystalline approximant structure. The results allow us to fit a
short-ranged, many-body correction of the form a(r_0/r)^{b} to the GPT pair
potentials for Co-Co, Co-Ni, and Ni-Ni interactions.Comment: 18 pages, 5 figures, submitted to PR
Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium
We have investigated the structural sequence of the high-pressure phases of
silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase
transitions. We have used the plane-wave pseudopotential approach to the
density-functional theory implemented within the Vienna ab-initio simulation
package (VASP). We have determined the equilibrium properties of each structure
and the values of the critical parameters including a hysteresis effect at the
phase transitions. The order of the phase transitions has been obtained
alternatively from the pressure dependence of the enthalpy and of the internal
structure parameters. The commonly used tangent construction is shown to be
very unreliable. Our calculations identify a first-order phase transition from
the cd to the beta-tin and from the Imma to the sh phase, and they indicate the
possibility of a second-order phase-transition from the beta-tin to the Imma
phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure
Structure of the icosahedral Ti-Zr-Ni quasicrystal
The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined
by invoking similarities to periodic crystalline phases, diffraction data and
the results from ab initio calculations. The structure is modeled by
decorations of the canonical cell tiling geometry. The initial decoration model
is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1
approximant structure of the quasicrystal. The decoration model is optimized
using a new method of structural analysis combining a least-squares refinement
of diffraction data with results from ab initio calculations. The resulting
structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration
rule and structural details are discussed.Comment: 12 pages, 8 figure
Recommended from our members
Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell
Mathematical modeling of bacterial chemotaxis systems has been influential and insightful in helping to understand experimental observations. We provide here a comprehensive overview of the range of mathematical approaches used for modeling, within a single bacterium, chemotactic processes caused by changes to external gradients in its environment. Specific areas of the bacterial system which have been studied and modeled are discussed in detail, including the modeling of adaptation in response to attractant gradients, the intracellular phosphorylation cascade, membrane receptor clustering, and spatial modeling of intracellular protein signal transduction. The importance of producing robust models that address adaptation, gain, and sensitivity are also discussed. This review highlights that while mathematical modeling has aided in understanding bacterial chemotaxis on the individual cell scale and guiding experimental design, no single model succeeds in robustly describing all of the basic elements of the cell. We conclude by discussing the importance of this and the future of modeling in this area
Flat photonic bands in guided modes of textured metallic microcavities
M. G. Salt and William L. Barnes, Physical Review B, Vol. 61, pp. 11125-11135 (2000). "Copyright © 2000 by the American Physical Society."A detailed experimental study of how wavelength-scale periodic texture modifies the dispersion of the guided modes of λ/2 metal-clad microcavities is presented. We first examine the case of a solid-state microcavity textured with a single, periodic corrugation. We explore how the depth of the corrugation and the waveguide thickness affect the width of the band gap produced in the dispersion of the guided modes by Bragg scattering off the periodic structure. We demonstrate that the majority of the corrugation depths studied dramatically modify the dispersion of the lowest-order cavity mode to produce a series of substantially flat bands. From measurements of how the central frequency of the band gap varies with direction of propagation of the guided modes, we determine a suitable two-dimensional texture profile for the production of a complete band gap in all directions of propagation. We then experimentally examine band gaps produced in the guided modes of such a two-dimensionally textured microcavity and demonstrate the existence of a complete band gap for all directions of propagation of the lowest-order TE-polarized mode. We compare our experimental results with those from a theoretical model and find good agreement. Implications of these results for emissive microcavity devices such as light-emitting diodes are discussed
- âŠ