10 research outputs found

    Impact of High-Intensity-NIV on the heart in stable COPD: A randomised cross-over pilot study

    Get PDF
    Background: Although high-intensity non-invasive ventilation has been shown to improve outcomes in stable COPD, it may adversely affect cardiac performance. Therefore, the aims of the present pilot study were to compare cardiac and pulmonary effects of 6 weeks of low-intensity non-invasive ventilation and 6 weeks of high-intensity non-invasive ventilation in stable COPD patients. Methods: In a randomised crossover pilot feasibility study, the change in cardiac output after 6 weeks of each NIV mode compared to baseline was assessed with echocardiography in 14 severe stable COPD patients. Furthermore, CO during NIV, gas exchange, lung function, and health-related quality of life were investigated. Results: Three patients dropped out: two deteriorated on low-intensity non-invasive ventilation, and one presented with decompensated heart failure while on high-intensity non-invasive ventilation. Eleven patients were included in the analysis. In general, cardiac output and NTproBNP did not change, although individual effects were noticed, depending on the pressures applied and/or the co-existence of heart failure. High-intensity non-invasive ventilation tended to be more effective in improving gas exchange, but both modes improved lung function and the health-related quality of life. Conclusions: Long-term non-invasive ventilation with adequate pressure to improve gas exchange and health-related quality of life did not have an overall adverse effect on cardiac performance. Nevertheless, in patients with pre-existing heart failure, the application of very high inspiratory pressures might reduce cardiac output

    Molecular Profiling of Keratinocyte Skin Tumors Links Staphylococcus aureus Overabundance and Increased Human β-Defensin-2 Expression to Growth Promotion of Squamous Cell Carcinoma

    No full text
    The skin microbiota plays a prominent role in health and disease; however, its contribution to skin tumorigenesis is not well understood. We comparatively assessed the microbial community compositions from excision specimens of the main human non-melanoma skin cancers, actinic keratosis (AK), squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Keratinocyte skin tumors are characterized by significantly different microbial community compositions, wherein AK and SCC are more similar to each other than to BCC. Notably, in SCC, which represents the advanced tumor entity and frequently develops from AK, overabundance of Staphylococcus aureus, a known skin pathogen, was noted. Moreover, S. aureus overabundance was significantly associated with increased human β-defensin-2 (hBD-2) expression in SCC. By challenging human SCC cell lines with S. aureus, a specific induction of hBD-2 expression and increased tumor cell growth was seen. Increased proliferation was also induced by directly challenging SCC cells with hBD-2. Together, our data indicate that a changed microbial community composition in SCC, specified by S. aureus overabundance, might promote tumor cell growth via modulation of hBD-2 expression

    Synthesis and Pharmacological Activities of 6-Glycine Substituted 14-Phenylpropoxymorphinans, a Novel Class of Opioids with High Opioid Receptor Affinities and Antinociceptive Potencies

    No full text
    The synthesis and the effect of a combination of 6-glycine and 14-phenylpropoxy substitutions in <i>N</i>-methyl- and <i>N</i>-cycloproplymethylmorphinans on biological activities are described. Binding studies revealed that all new 14-phenylpropoxymorphinans (<b>11</b>−<b>18</b>) displayed high affinity to opioid receptors. Replacement of the 14-methoxy group with a phenylpropoxy group led to an enhancement in affinity to all three opioid receptor types, with most pronounced increases in δ and κ activities, hence resulting in a loss of μ receptor selectivity. All compounds (<b>11</b>−<b>18</b>) showed potent and long-lasting antinociceptive effects in the tail-flick test in rats after subcutaneous administration. For the <i>N</i>-methyl derivatives <b>13</b> and <b>14</b>, analgesic potencies were in the range of their 14-methoxy analogues <b>9</b> and <b>10</b>, respectively. Even derivatives <b>15</b>−<b>18</b> with an <i>N</i>-cyclopropylmethyl substituent acted as potent antinociceptive agents, being several fold more potent than morphine. Subcutaneous administration of compounds <b>13</b> and <b>14</b> produced significant and prolonged antinociceptive effects mediated through peripheral opioid mechanisms in carrageenan-induced inflammatory hyperalgesia in rats

    Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000

    No full text
    Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy

    Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    No full text
    After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 1019 m-3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.Peer reviewe
    corecore