64 research outputs found

    Theory for Cavity Cooling of Levitated Nanoparticles via Coherent Scattering: Master Equation Approach

    Full text link
    We develop a theory for cavity cooling of the center-of-mass motion of a levitated nanoparticle through coherent scattering into an optical cavity. We analytically determine the full coupled Hamiltonian for the nanoparticle, cavity, and free electromagnetic field. By tracing out the latter, we obtain a Master Equation for the cavity and the center of mass motion, where the decoherence rates ascribed to recoil heating, gas pressure, and trap displacement noise are calculated explicitly. Then, we benchmark our model by reproducing published experimental results for three-dimensional cooling. Finally, we use our model to demonstrate the possibility of ground-state cooling along each of the three motional axes. Our work illustrates the potential of cavity-assisted coherent scattering to reach the quantum regime of levitated nanomechanics.Comment: 27 pages (18 main text + 9 Appendices), 12 figures, 3 table

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps

    The target space geometry of N=(2,1) string theory

    Get PDF
    We describe the O(α′0){\cal{O}}({\alpha'}^0) constraints on the target space geometry of the N=(2,1)N=(2,1) heterotic superstring due to the left-moving N=1N=1 supersymmetry and U(1)U(1) currents. In the fermionic description of the internal sector supersymmetry is realized quantum mechanically, so that both tree-level and one-loop effects contribute to the order O(α′0){\cal{O}}({\alpha'}^0) constraints. We also discuss the physical interpretation of the resulting target space geometry in terms of configurations of a 2+22+2-dimensional object propagating in a 10+210+2-dimensional spacetime with a null isometry, which has recently been suggested as a unified description of string and M theory.Comment: 41 pages, 5 figures, standard LaTeX, uses epsf.tex. Some typos corrected, discussion in footnote 1 correcte

    Low energy fixed points of the sigma-tau and the O(3) symmetric Anderson models

    Full text link
    We study the single channel (compactified) models, the sigma-tau model and the O(3) symmetric Anderson model, which were introduced by Coleman et al., and Coleman and Schofield, as a simplified way to understand the low energy behaviour of the isotropic and anisotropic two channel Kondo systems. These models display both Fermi liquid and marginal Fermi liquid behaviour and an understanding of the nature of their low energy fixed points may give some general insights into the low energy behaviour of other strongly correlated systems. We calculate the excitation spectrum at the non-Fermi liquid fixed point of the sigma-tau model using conformal field theory, and show that the results are in agreement with those obtained in recent numerical renormalization group (NRG) calculations. For the O(3) Anderson model we find further logarithmic corrections in the weak coupling perturbation expansion to those obtained in earlier calculations, such that the renormalized interaction term now becomes marginally stable rather than marginally unstable. We derive a Ward identity and a renormalized form of the perturbation theory that encompasses both the weak and strong coupling regimes and show that the chi/gamma ratio is 8/3 (chi is the total susceptibility, spin plus isospin), independent of the interaction U and in agreement with the NRG calculations.Comment: 23 pages, LaTeX, 11 figures includes as eps-files, submitted to Phys. Rev.

    Polarization and magnetization dynamics of a field-driven multiferroic structure

    Get PDF
    We consider a multiferroic chain with a linear magnetoelectric coupling induced by the electrostatic screening at the ferroelectric/ferromagnet interface. We study theoretically the dynamic ferroelectric and magnetic response to external magnetic and electric fields by utilizing an approach based on coupled Landau- Khalatnikov and finite-temperature Landau-Lifshitz-Gilbert equations. Additionally, we compare with Monte Carlo calculations. It is demonstrated that for material parameters corresponding to BaTiO3/Fe the polarization and the magnetization are controllable by external magnetic and electric fields respectively

    Solitons in the Higgs phase -- the moduli matrix approach --

    Full text link
    We review our recent work on solitons in the Higgs phase. We use U(N_C) gauge theory with N_F Higgs scalar fields in the fundamental representation, which can be extended to possess eight supercharges. We propose the moduli matrix as a fundamental tool to exhaust all BPS solutions, and to characterize all possible moduli parameters. Moduli spaces of domain walls (kinks) and vortices, which are the only elementary solitons in the Higgs phase, are found in terms of the moduli matrix. Stable monopoles and instantons can exist in the Higgs phase if they are attached by vortices to form composite solitons. The moduli spaces of these composite solitons are also worked out in terms of the moduli matrix. Webs of walls can also be formed with characteristic difference between Abelian and non-Abelian gauge theories. We characterize the total moduli space of these elementary as well as composite solitons. Effective Lagrangians are constructed on walls and vortices in a compact form. We also present several new results on interactions of various solitons, such as monopoles, vortices, and walls. Review parts contain our works on domain walls (hep-th/0404198, hep-th/0405194, hep-th/0412024, hep-th/0503033, hep-th/0505136), vortices (hep-th/0511088, hep-th/0601181), domain wall webs (hep-th/0506135, hep-th/0508241, hep-th/0509127), monopole-vortex-wall systems (hep-th/0405129, hep-th/0501207), instanton-vortex systems (hep-th/0412048), effective Lagrangian on walls and vortices (hep-th/0602289), classification of BPS equations (hep-th/0506257), and Skyrmions (hep-th/0508130).Comment: 89 pages, 33 figures, invited review article to Journal of Physics A: Mathematical and General, v3: typos corrected, references added, the published versio

    Screening for inter-hospital differences in cesarean section rates in low-risk deliveries using administrative data: An initiative to improve the quality of care

    Get PDF
    BACKGROUND: Rising national cesarean section rates (CSRs) and unexplained inter-hospital differences in CSRs, led national and international bodies to select CSR as a quality indicator. Using hospital discharge abstracts, we aimed to document in Belgium (1) inter-hospital differences in CSRs among low risk deliveries, (2) a national upward CSR trend, (3) lack of better neonatal outcomes in hospitals with high CSRs, and (4) possible under-use of CS. METHODS: We defined a population of low risk deliveries (singleton, vertex, full-term, live born, 2499 g). Using multivariable logistic regression techniques, we provided degrees of evidence regarding the observed departure ([relative risk-1]*100) of each hospital (N = 107) from the national CSR and its trend. To determine a benchmark, we defined three CSR groups (high, average and low) and compared them regarding 1 minute Apgar scores and other neonatal endpoints. An anonymous feedback is provided to the hospitals, the College of Physicians (with voluntary disclosure of the outlying hospitals for quality improvement purposes) and to the policy makers. RESULTS: Compared with available information, the completeness and accuracy of the data, regarding the variables selected to determine our study population, showed adequate. Important inter-hospital differences were found. Departures ranged from -65% up to +75%, and 9 "high CSR" and 13 "low CSR" outlying hospitals were identified. We observed a national increasing trend of 1.019 (95%CI [1.015; 1.022]) per semester, adjusted for age groups. In the "high CSR" group 1 minute Apgar scores <4 were over-represented in the subgroup of vaginal deliveries, suggesting CSs not carried out for medical reasons. Under-use of CS was also observed. Given their questionable completeness, except Apgar scores, our neonatal results, showing a significant association of CS with adverse neonatal endpoints, are to be cautiously interpreted. Taking the available evidence into account, the "Average CSR" group seemed to be the best benchmark candidate. CONCLUSION: Rather than firm statements about quality of care, our results are to be considered a useful screening. The inter-hospital differences in CSR, the national CS upward trend, the indications of over-use and under-use, the geographically different obstetric patterns and the admission day-related concentration of deliveries, whether or not by CS, may trigger initiatives aiming at improving quality of care

    Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity

    Get PDF
    Abstract Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility

    Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes

    Full text link
    • …
    corecore