64 research outputs found
Theory for Cavity Cooling of Levitated Nanoparticles via Coherent Scattering: Master Equation Approach
We develop a theory for cavity cooling of the center-of-mass motion of a
levitated nanoparticle through coherent scattering into an optical cavity. We
analytically determine the full coupled Hamiltonian for the nanoparticle,
cavity, and free electromagnetic field. By tracing out the latter, we obtain a
Master Equation for the cavity and the center of mass motion, where the
decoherence rates ascribed to recoil heating, gas pressure, and trap
displacement noise are calculated explicitly. Then, we benchmark our model by
reproducing published experimental results for three-dimensional cooling.
Finally, we use our model to demonstrate the possibility of ground-state
cooling along each of the three motional axes. Our work illustrates the
potential of cavity-assisted coherent scattering to reach the quantum regime of
levitated nanomechanics.Comment: 27 pages (18 main text + 9 Appendices), 12 figures, 3 table
Multicritical continuous random trees
We introduce generalizations of Aldous' Brownian Continuous Random Tree as
scaling limits for multicritical models of discrete trees. These discrete
models involve trees with fine-tuned vertex-dependent weights ensuring a k-th
root singularity in their generating function. The scaling limit involves
continuous trees with branching points of order up to k+1. We derive explicit
integral representations for the average profile of this k-th order
multicritical continuous random tree, as well as for its history distributions
measuring multi-point correlations. The latter distributions involve
non-positive universal weights at the branching points together with fractional
derivative couplings. We prove universality by rederiving the same results
within a purely continuous axiomatic approach based on the resolution of a set
of consistency relations for the multi-point correlations. The average profile
is shown to obey a fractional differential equation whose solution involves
hypergeometric functions and matches the integral formula of the discrete
approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
The target space geometry of N=(2,1) string theory
We describe the constraints on the target space
geometry of the heterotic superstring due to the left-moving
supersymmetry and currents. In the fermionic description of the internal
sector supersymmetry is realized quantum mechanically, so that both tree-level
and one-loop effects contribute to the order
constraints. We also discuss the physical interpretation of the resulting
target space geometry in terms of configurations of a -dimensional object
propagating in a -dimensional spacetime with a null isometry, which has
recently been suggested as a unified description of string and M theory.Comment: 41 pages, 5 figures, standard LaTeX, uses epsf.tex. Some typos
corrected, discussion in footnote 1 correcte
Low energy fixed points of the sigma-tau and the O(3) symmetric Anderson models
We study the single channel (compactified) models, the sigma-tau model and
the O(3) symmetric Anderson model, which were introduced by Coleman et al., and
Coleman and Schofield, as a simplified way to understand the low energy
behaviour of the isotropic and anisotropic two channel Kondo systems. These
models display both Fermi liquid and marginal Fermi liquid behaviour and an
understanding of the nature of their low energy fixed points may give some
general insights into the low energy behaviour of other strongly correlated
systems. We calculate the excitation spectrum at the non-Fermi liquid fixed
point of the sigma-tau model using conformal field theory, and show that the
results are in agreement with those obtained in recent numerical
renormalization group (NRG) calculations. For the O(3) Anderson model we find
further logarithmic corrections in the weak coupling perturbation expansion to
those obtained in earlier calculations, such that the renormalized interaction
term now becomes marginally stable rather than marginally unstable. We derive a
Ward identity and a renormalized form of the perturbation theory that
encompasses both the weak and strong coupling regimes and show that the
chi/gamma ratio is 8/3 (chi is the total susceptibility, spin plus isospin),
independent of the interaction U and in agreement with the NRG calculations.Comment: 23 pages, LaTeX, 11 figures includes as eps-files, submitted to Phys.
Rev.
Polarization and magnetization dynamics of a field-driven multiferroic structure
We consider a multiferroic chain with a linear magnetoelectric coupling
induced by the electrostatic screening at the ferroelectric/ferromagnet
interface. We study theoretically the dynamic ferroelectric and magnetic
response to external magnetic and electric fields by utilizing an approach
based on coupled Landau- Khalatnikov and finite-temperature
Landau-Lifshitz-Gilbert equations. Additionally, we compare with Monte Carlo
calculations. It is demonstrated that for material parameters corresponding to
BaTiO3/Fe the polarization and the magnetization are controllable by external
magnetic and electric fields respectively
Solitons in the Higgs phase -- the moduli matrix approach --
We review our recent work on solitons in the Higgs phase. We use U(N_C) gauge
theory with N_F Higgs scalar fields in the fundamental representation, which
can be extended to possess eight supercharges. We propose the moduli matrix as
a fundamental tool to exhaust all BPS solutions, and to characterize all
possible moduli parameters. Moduli spaces of domain walls (kinks) and vortices,
which are the only elementary solitons in the Higgs phase, are found in terms
of the moduli matrix. Stable monopoles and instantons can exist in the Higgs
phase if they are attached by vortices to form composite solitons. The moduli
spaces of these composite solitons are also worked out in terms of the moduli
matrix. Webs of walls can also be formed with characteristic difference between
Abelian and non-Abelian gauge theories. We characterize the total moduli space
of these elementary as well as composite solitons. Effective Lagrangians are
constructed on walls and vortices in a compact form. We also present several
new results on interactions of various solitons, such as monopoles, vortices,
and walls. Review parts contain our works on domain walls (hep-th/0404198,
hep-th/0405194, hep-th/0412024, hep-th/0503033, hep-th/0505136), vortices
(hep-th/0511088, hep-th/0601181), domain wall webs (hep-th/0506135,
hep-th/0508241, hep-th/0509127), monopole-vortex-wall systems (hep-th/0405129,
hep-th/0501207), instanton-vortex systems (hep-th/0412048), effective
Lagrangian on walls and vortices (hep-th/0602289), classification of BPS
equations (hep-th/0506257), and Skyrmions (hep-th/0508130).Comment: 89 pages, 33 figures, invited review article to Journal of Physics A:
Mathematical and General, v3: typos corrected, references added, the
published versio
Screening for inter-hospital differences in cesarean section rates in low-risk deliveries using administrative data: An initiative to improve the quality of care
BACKGROUND: Rising national cesarean section rates (CSRs) and unexplained inter-hospital differences in CSRs, led national and international bodies to select CSR as a quality indicator. Using hospital discharge abstracts, we aimed to document in Belgium (1) inter-hospital differences in CSRs among low risk deliveries, (2) a national upward CSR trend, (3) lack of better neonatal outcomes in hospitals with high CSRs, and (4) possible under-use of CS. METHODS: We defined a population of low risk deliveries (singleton, vertex, full-term, live born, 2499 g). Using multivariable logistic regression techniques, we provided degrees of evidence regarding the observed departure ([relative risk-1]*100) of each hospital (N = 107) from the national CSR and its trend. To determine a benchmark, we defined three CSR groups (high, average and low) and compared them regarding 1 minute Apgar scores and other neonatal endpoints. An anonymous feedback is provided to the hospitals, the College of Physicians (with voluntary disclosure of the outlying hospitals for quality improvement purposes) and to the policy makers. RESULTS: Compared with available information, the completeness and accuracy of the data, regarding the variables selected to determine our study population, showed adequate. Important inter-hospital differences were found. Departures ranged from -65% up to +75%, and 9 "high CSR" and 13 "low CSR" outlying hospitals were identified. We observed a national increasing trend of 1.019 (95%CI [1.015; 1.022]) per semester, adjusted for age groups. In the "high CSR" group 1 minute Apgar scores <4 were over-represented in the subgroup of vaginal deliveries, suggesting CSs not carried out for medical reasons. Under-use of CS was also observed. Given their questionable completeness, except Apgar scores, our neonatal results, showing a significant association of CS with adverse neonatal endpoints, are to be cautiously interpreted. Taking the available evidence into account, the "Average CSR" group seemed to be the best benchmark candidate. CONCLUSION: Rather than firm statements about quality of care, our results are to be considered a useful screening. The inter-hospital differences in CSR, the national CS upward trend, the indications of over-use and under-use, the geographically different obstetric patterns and the admission day-related concentration of deliveries, whether or not by CS, may trigger initiatives aiming at improving quality of care
Recommended from our members
Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation
Purpose
To test the prebiotic activity of wheat arabinogalactan-peptide (AGP), which is a soluble dietary fibre composed of arabinogalactan polysaccharide linked to a 15-residue peptide, which accounts for up to 0.4% of the dry weight of wheat flour.
Methods
The prebiotic activity of AGP prepared from white wheat flour was tested using in-vitro fermentation by colonic bacteria in automated pH controlled anaerobic stirred batch cultures and compared to fructooligosaccharide (FOS) and wheat flour arabinoxylan (AX). Bacterial populations were measured using fluorescence in-situ hybridisation (flow-FISH) and short-chain fatty acid (SCFA) concentrations were measured using HPLC.
Results
Fermentation of AGP resulted in a significant bifidogenic activity and increased concentrations of SCFAs, mainly acetate after 24 h of fermentation.
Conclusions
These results were comparable to those obtained with AX and confirm the prebiotic potential of AGP. Furthermore, fermentation of a mixture of AGP and AX was faster compared to the single substrates and more similar to FOS, indicating that combinations of fermentable carbohydrates with different structures are potentially more effective as prebiotics than single substrates
Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity
Abstract Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility
- …