1,188 research outputs found
Single Electron Transistors
Contains description of one research project and a list of publications.Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 88-13250National Science Foundation Grant ECS 92-0342
Intensity of Coulomb Interaction between quasiparticles in diffusive metallic wires
The energy dependence and intensity of Coulomb interaction between
quasiparticles in metallic wires is obtained from two different methods:
determination of the temperature dependence of the phase coherence time from
the magnetoresistance, and measurements of the energy distribution function in
out-of-equilibrium situations. In both types of experiment, the energy
dependence of the Coulomb interaction is found to be in excellent agreement
with theoretical predictions. In contrast, the intensity of the interaction
agrees closely with theory only with the first method, whereas an important
discrepancy is found using the second one. Different explanations are proposed,
and results of a test experiment are presented.Comment: Submitted to Solid States Communication
Single Electron Transistors
Contains description of one research project.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 88-1325
Interaction effects and phase relaxation in disordered systems
This paper is intended to demonstrate that there is no need to revise the
existing theory of the transport properties of disordered conductors in the
so-called weak localization regime. In particular, we demonstrate explicitly
that recent attempts to justify theoretically that the dephasing rate
(extracted from the magnetoresistance) remains finite at zero temperature are
based on the profoundly incorrect calculation. This demonstration is based on a
straightforward evaluation of the effect of the electron-electron interaction
on the weak localization correction to the conductivity of disordered metals.
Using well-controlled perturbation theory with the inverse conductance as
the small parameter, we show that this effect consists of two contributions.
First contribution comes from the processes with energy transfer smaller than
the temperature. This contribution is responsible for setting the energy scale
for the magnetoresistance. The second contribution originates from the virtual
processes with energy transfer larger than the temperature. It is shown that
the latter processes have nothing to do with the dephasing, but rather manifest
the second order (in ) correction to the conductance. This correction is
calculated for the first time. The paper also contains a brief review of the
existing experiments on the dephasing of electrons in disordered conductors and
an extended qualitative discussion of the quantum corrections to the
conductivity and to the density of electronic states in the weak localization
regime.Comment: 34 pages, 13 .eps figure
Electronic Transport in a Three-dimensional Network of 1-D Bismuth Quantum Wires
The resistance R of a high density network of 6 nm diameter Bi wires in
porous Vycor glass is studied in order to observe its expected semiconductor
behavior. R increases from 300 K down to 0.3 K. Below 4 K, where R varies
approximately as ln(1/T), the order-of-magnitude of the resistance rise, as
well as the behavior of the magnetoresistance are consistent with localization
and electron-electron interaction theories of a one-dimensional disordered
conductor in the presence of strong spin-orbit scattering. We show that this
behaviour and the surface-enhanced carrier density may mask the proposed
semimetal-to-semiconductor transition for quantum Bi wires.Comment: 19 pages total, 4 figures; accepted for publication in Phys. Rev.
Dephasing of Electrons by Two-Level Defects in Quantum Dots
The electron dephasing time in a diffusive quantum dot is
calculated by considering the interaction between the electron and dynamical
defects, modelled as two-level system. Using the standard tunneling model of
glasses, we obtain a linear temperature dependence of ,
consistent with the experimental observation. However, we find that, in order
to obtain dephasing times on the order of nanoseconds, the number of two-level
defects needs to be substantially larger than the typical concentration in
glasses. We also find a finite system-size dependence of , which
can be used to probe the effectiveness of surface-aggregated defects.Comment: two-column 9 page
UK Large-scale Wind Power Programme from 1970 to 1990: the Carmarthen Bay experiments and the Musgrove Vertical-Axis Turbines
This article describes the development of the Musgrove Vertical Axis Wind Turbine (VAWT)
concept, the UK ‘Carmarthen Bay’ wind turbine test programme, and UK government’s wind
power programme to 1990. One of the most significant developments in the story of British
wind power occurred during the 1970s, 1980s, and 1990s, with the development of the
Musgrove vertical axis wind turbine and its inclusion within the UK Government’s wind
turbine test programme. Evolving from a supervisor’s idea for an undergraduate project at
Reading University, the Musgrove VAWT was once seen as an able competitor to the
horizontal axis wind systems that were also being encouraged at the time by both the UK
government and the Central Electricity Generating Board, the then nationalised electricity
utility for England and Wales. During the 1980s and 1990s the most developed Musgrove
VAWT system, along with three other commercial turbine designs was tested at
Carmarthen Bay, South Wales as part of a national wind power test programme. From these
developmental tests, operational data was collected and lessons learnt, which were
incorporated into subsequent wind power operations.http://dx.doi.org/10.1260/03095240677860621
Strong localization of electrons in quasi-one-dimensional conductors
We report on the experimental study of electron transport in sub-micron-wide
''wires'' fabricated from Si -doped GaAs. These quasi-one-dimensional
(Q1D) conductors demonstrate the crossover from weak to strong localization
with decreasing the temperature. On the insulating side of the crossover, the
resistance has been measured as a function of temperature, magnetic field, and
applied voltage for different values of the electron concentration, which was
varied by applying the gate voltage. The activation temperature dependence of
the resistance has been observed with the activation energy close to the mean
energy spacing of electron states within the localization domain. The study of
non-linearity of the current-voltage characteristics provides information on
the distance between the critical hops which govern the resistance of Q1D
conductors in the strong localization (SL) regime. We observe the exponentially
strong negative magnetoresistance; this orbital magnetoresistance is due to the
universal magnetic-field dependence of the localization length in Q1D
conductors. The method of measuring of the single-particle density of states
(DoS) in the SL regime has been suggested. Our data indicate that there is a
minimum of DoS at the Fermi level due to the long-range Coulomb interaction.Comment: 12 pages, 11 figures; the final version to appear in Phys. Rev.
- …