2,532 research outputs found

    Early estate structures in Cumbria and Lancashire

    Get PDF

    Gathering preliminary data

    Get PDF
    Prior to any large-scale basic science or clinical research project being funded, it is important for researchers to gather preliminary data. This is essential for providing evidence for the feasibility of research projects and helping to design larger-scale studies. When gathering preliminary data one needs to consider how many data are required, how this work is to be funded and where and when the data will be generated. Most importantly researchers should ensure that the planned data collection will be meaningful, serve its intended purpose and follow the principles of good clinical practice

    Springtime surface ozone fluctuations at high Arctic latitudes and their possible relationship to atmospheric bromine

    Get PDF
    At high Arctic stations such as Barrow, Alaska, springtime near-surface ozone amounts fluctuate between the highest and lowest values seen during the course of the year. Episodes when the surface ozone concentration is essentially zero last up to several days during this time of year. In the Arctic Gas and Aerosol Sampling Program (AGASP-I and AGASP-II) in 1983 and 1986, it was found that ozone concentrations often showed a very steep gradient in altitude with very low values near the surface. The cold temperatures, and snow-covered ground make it unlikely that the surface itself would rapidly destroy significant amounts of ozone. The AGASP aircraft measurements that found low ozone concentrations in the lowest layers of the troposphere also found that filterable excess bromine (the amount of bromine in excess of the sea salt component) in samples collected wholly or partially beneath the temperature inversion had higher bromine concentrations than other tropospheric samples. Of the four lowest ozone minimum concentrations, three of them were associated with the highest bromine enrichments. Surface measurements of excess filterable bromine at Barrow show a strong seasonal dependence with values rising dramatically early in March, then declining in May. The concentration of organic bromine gases such as bromoform rise sharply during the winter and then begin to decline after March with winter and early spring values at least three times greater than the summer minimum

    Comparison of the Effects of Ice and 3.5% Menthol Gel on Blood Flow and Muscle Strength of the Lower Arm

    Get PDF
    Context: Soft-tissue injuries are commonly treated with ice or menthol gels. Few studies have compared the effects of these treatments on blood flow and muscle strength. Objective: To compare blood flow and muscle strength in the forearm after an application of ice or menthol gel or no treatment. Design: Repeated measures design in which blood-flow and muscle-strength data were collected from subjects under 3 treatment conditions. Setting: Exercise physiology laboratory. Participants: 17 healthy adults with no impediment to the blood flow or strength in their right arm, recruited through word of mouth. Intervention: Three separate treatment conditions were randomly applied topically to the right forearm: no treatment, 0.5 kg of ice, or 3.5 mL of 3.5% menthol gel. To avoid injury ice was only applied for 20 min. Main Outcome Measures: At each data-collection session blood flow (mL/min) of the right radial artery was determined at baseline before any treatment and then at 5, 10, 15, and 20 min after treatment using Doppler ultrasound. Muscle strength was assessed as maximum isokinetic flexion and extension of the wrist at 30°/s 20, 25, and 30 min after treatment. Results: The menthol gel reduced (–42%, P \u3c .05) blood flow in the radial artery 5 min after application but not at 10, 15, or 20 min after application. Ice reduced (–48%, P \u3c .05) blood flow in the radial artery only after 20 min of application. After 15 min of the control condition blood flow increased (83%, P \u3c .05) from baseline measures. After the removal of ice, wrist-extension strength did not increase per repeated strength assessment as it did during the control condition (9–11%, P \u3c .05) and menthol-gel intervention (8%, P \u3c .05). Conclusions: Menthol has a fast-acting, short-lived effect of reducing blood flow. Ice reduces blood flow after a prolonged duration. Muscle strength appears to be inhibited after ice application

    First record of Pseudohaida rothi Hatch (Coleoptera: Staphylinidae: Omaliinae) from Canada

    Get PDF
    Pseudohaida rothi Hatch is reported for the first time from Canada from an old-growth, temperate rain forest on Vancouver Island, B.C. Records of other rare species of the subfamily Omaliinae are given together with a brief discussion of the importance of the remaining intact old-growth forests in preserving the biodiversity contained in the forest regions of Canada

    CLOVER: A modelling framework for sustainable community-scale energy systems

    Get PDF
    Sustainable Development Goal 7 aims to provide sustainable, affordable, reliable and modern energy access to all by 2030 (United Nations, 2015). In order for this goal to be achieved, sustainable energy interventions in developing countries must be supported with design tools which can evaluate the technical performance of energy systems as well as their economic and climate impacts. CLOVER (Continuous Lifetime Optimisation of Variable Electricity Resources) is a software tool for simulating and optimising community-scale energy systems, typically minigrids, to support energy access in developing countries (Winchester et al., 2022). CLOVER can be used to model electricity demand and supply at an hourly resolution, for example allowing users to investigate how an electricity system might perform at a given location. CLOVER can also identify an optimally-sized energy system to meet the needs of the community under specified constraints. For example, a user could define an optimum system as one which provides a desired level of reliability at the lowest cost of electricity. CLOVER can provide an insight into the technical performance, costs, and climate change impact of a system, and allow the user to evaluate many different scenarios to decide on the best way to provide sustainable, affordable and reliable electricity to a community. CLOVER can be used on both personal computers and high-performance computing facilities. Its design separates its general framework (code, contained in a source src directory) from user inputs (data, contained in a directory entitled locations) which are specific to their investigations. The user inputs these data via a combination of .csv and .yaml files. CLOVER’s straightforward command-line interface provides simple operation for both experienced Python users and those with little prior exposure to coding. An installable package, clover-energy, is available for users to download without needing to become familiar with GitHub’s interface. Information about CLOVER and how to use it is available on the CLOVER wiki pages

    Will Economic Restructuring in China Reduce Trade-Embodied CO2 Emissions?

    Get PDF
    We calculate CO2 emissions embodied in China’s net exports using a multi-regional input-output database. We find that the majority of China’s export-embodied CO2 is associated with production of machinery and equipment rather than energy-intensive products, such as steel and aluminum. In 2007, the largest net recipients of embodied CO2 emissions from China include the EU (360 million metric tons, mmt), the U.S. (337 mmt), and Japan (109 mmt). Overall, annual CO2 emissions embodied in China’s net exports totaled 1,177 mmt, equal to 22% of China’s total CO2 emissions. We also develop a global general equilibrium model with a detailed treatment of energy and CO2 emissions. We use the model to analyze the impact of a sectoral shift in the Chinese economy away from industry and towards services, both without and with a decrease in China’s trade surplus, and a tax on energy-intensive exports, which reflect policy objectives in China’s Twelfth Five-Year Plan (2011–2015). We find that without a decrease in the trade surplus, both policies will have a limited impact on China’s net exports of embodied CO2 emissions. The policies have an even smaller effect on global emissions, as reduced production in China is partially offset by increased production elsewhere.We acknowledge the support of the National Social Science Foundation of China (Project No. Project No. 09&ZD029) and the Institute for Energy, Environment, and Economy at Tsinghua University, which is supporting Tianyu Qi’s doctoral research as a visiting scholar at the Massachusetts Institute of Technology. We further acknowledge the support of Eni S.p.A., ICF International, and Shell International Ltd., initial sponsors of the China Energy and Climate Project in the MIT Joint Program on the Science and Policy of Global Change at MIT. None of the sponsoring organizations played a role in the study design, collection, analysis, or interpretation of the data used for this study, nor did they influence our decisions to submit the article for publication, and all errors are our own. We also acknowledge general industrial and government sponsors of the Joint Program on the Science and Policy of Global Change (http://globalchange.mit.edu/sponsors/all)
    corecore