7 research outputs found

    Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldSystemic lupus erythematosus (SLE) is a complex systemic autoimmune disease caused by both genetic and environmental factors. Genome scans in families with SLE point to multiple potential chromosomal regions that harbor SLE susceptibility genes, and association studies in different populations have suggested several susceptibility alleles for SLE. Increased production of type I interferon (IFN) and expression of IFN-inducible genes is commonly observed in SLE and may be pivotal in the molecular pathogenesis of the disease. We analyzed 44 single-nucleotide polymorphisms (SNPs) in 13 genes from the type I IFN pathway in 679 Swedish, Finnish, and Icelandic patients with SLE, in 798 unaffected family members, and in 438 unrelated control individuals for joint linkage and association with SLE. In two of the genes--the tyrosine kinase 2 (TYK2) and IFN regulatory factor 5 (IRF5) genes--we identified SNPs that displayed strong signals in joint analysis of linkage and association (unadjusted P<10(-7)) with SLE. TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression. Thus, our results support a disease mechanism in SLE that involves key components of the type I IFN system

    scSPLAT, a scalable plate-based protocol for single cell WGBS library preparation

    No full text
    DNA methylation is a central epigenetic mark that has diverse roles in gene regulation, development, and maintenance of genome integrity. 5 methyl cytosine (5mC) can be interrogated at base resolution in single cells by using bisulfite sequencing (scWGBS). Several different scWGBS strategies have been described in recent years to study DNA methylation in single cells. However, there remain limitations with respect to cost-efficiency and yield. Herein, we present a new development in the field of scWGBS library preparation; single cell Splinted Ligation Adapter Tagging (scSPLAT). scSPLAT employs a pooling strategy to facilitate sample preparation at a higher scale and throughput than previously possible. We demonstrate the accuracy and robustness of the method by generating data from 225 single K562 cells and from 309 single liver nuclei and compare scSPLAT against other scWGBS methods

    An insertion-deletion polymorphism in the interferon regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases.

    No full text
    The interferon regulatory factor 5 (IRF5) gene encodes a transcription factor that plays an important role in the innate as well as in the cell-mediated immune responses. The IRF5 gene has been shown to be associated with systemic lupus erythematosus and rheumatoid arthritis. We studied whether the IRF5 gene is also associated with inflammatory bowel diseases (IBD), Crohn disease (CD) and ulcerative colitis (UC). Twelve polymorphisms in the IRF5 gene were genotyped in a cohort of 1007 IBD patients (748 CD and 254 UC) and 241 controls from Wallonia, Belgium. The same polymorphisms were genotyped in a confirmatory cohort of 311 controls and 687 IBD patients (488 CD and 192 UC) from Leuven, Belgium. A strong signal of association [P = 1.9 x 10(-5), odds ratio (OR) 1.81 (1.37-2.39)] with IBD was observed for a 5 bp indel (CGGGG) polymorphism in the promoter region of the IRF5 gene. The association was detectable also in CD patients (P = 6.8 x 10(-4)) and was particularly strong among the UC patients [P = 5.3 x 10(-8), OR = 2.42 (1.76-3.34)]. The association of the CGGGG indel was confirmed in the second cohort [P = 3.2 x 10(-5), OR = 1.59 (1.28-1.98)]. The insertion of one CGGGG unit is predicted to create an additional binding site for the transcription factor SP1. Using an electrophoretic mobility shift assay, we show allele-specific differences in protein binding to this repetitive DNA-stretch, which suggest a potential function role for the CGGGG indel.Comparative StudyJournal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis

    No full text
    Objective. To determine whether genetic variants of the interferon regulatory factor 5 (IRF-5) and Tyk-2 genes are associated with rheumatoid arthritis (RA). Methods. Five single-nucleotide polymorphisms (SNPs) in IRF5 and 3 SNPs in Tyk2 were analyzed in a Swedish cohort of 1,530 patients with RA and 881 controls. A replication study was performed in a Dutch cohort of 387 patients with RA and 181 controls. All patient sera were tested for the presence of autoantibodies against cyclic citrullinated peptides (anti-CCP). Results. Four of the 5 SNPs located in the 5 region of IRF5 were associated with RA, while no association was observed with the Tyk2 SNPs. The minor alleles of 3 of the IRF5 SNPs, which were in linkage disequilibrium and formed a relatively common haplotype with a frequency of Ďł0.33, appeared to confer protection against RA. Although these disease associations were seen in the entire patient group, they were mainly found in RA patients who were negative for anti-CCP. A suggestive association of IRF5 SNPs with anti-CCP-negative RA was also observed in the Dutch cohort. Conclusion. Given the fact that anti-CCPnegative RA differs from anti-CCP-positive RA with respect to genetic and environmental risk factor profiles, our results indicate that genetic variants of IRF5 contribute to a unique disease etiology and pathogenesis in anti-CCP-negative RA. The type I interferons (IFNs) comprise a large family of cytokines that are typically produced during viral infections, mainly by plasmacytoid dendritic cells (1). In addition to direct antiviral effects, type I IFNs have many important immunomodulatory functions (1). For instance, they cause maturation of dendritic cells, promote T cell activation, and stimulate B cell development and production of antibodies. Data from previous studies indicate that the type I IFN system plays a pivotal role when self tolerance is broken and autoimmune reactions develop (2). Accordingly, the type I IFN system is activated in many autoimmune diseases, including systemic lupus erythematosus (SLE) (2), priDr. Sigurdsso

    Polymorphisms in the Tyrosine Kinase 2 and Interferon Regulatory Factor 5 Genes Are Associated with Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease caused by both genetic and environmental factors. Genome scans in families with SLE point to multiple potential chromosomal regions that harbor SLE susceptibility genes, and association studies in different populations have suggested several susceptibility alleles for SLE. Increased production of type I interferon (IFN) and expression of IFN-inducible genes is commonly observed in SLE and may be pivotal in the molecular pathogenesis of the disease. We analyzed 44 single-nucleotide polymorphisms (SNPs) in 13 genes from the type I IFN pathway in 679 Swedish, Finnish, and Icelandic patients with SLE, in 798 unaffected family members, and in 438 unrelated control individuals for joint linkage and association with SLE. In two of the genes—the tyrosine kinase 2 (TYK2) and IFN regulatory factor 5 (IRF5) genes—we identified SNPs that displayed strong signals in joint analysis of linkage and association (unadjusted P<10(-7)) with SLE. TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression. Thus, our results support a disease mechanism in SLE that involves key components of the type I IFN system
    corecore