44 research outputs found

    Pancreatic fibrosis correlates with exocrine pancreatic insufficiency after pancreatoduodenectomy

    Get PDF
    Background: Obstruction of the pancreatic duct can lead to pancreatic fibrosis. We investigated the correlation between the extent of pancreatic fibrosis and the postoperative exocrine and endocrine pancreatic function. Methods: Fifty-five patients who were treated for pancreatic and periampullary carcinoma and 19 patients with chronic pancreatitis were evaluated. Exocrine pancreatic function was evaluated by fecal elastase-1 test, while endocrine pancreatic function was assessed by plasma glucose level. The extent of fibrosis, duct dilation and endocrine tissue loss was examined histopathologically. Results: A strong correlation was found between pancreatic fibrosis and elastase-1 level less than 100 μg/g (p < 0.0001), reflecting severe exocrine pancreatic insufficiency. A strong correlation was found between pancreatic fibrosis and endocrine tissue loss (p < 0.0001). Neither pancreatic fibrosis nor endocrine tissue loss were correlated with the development of postoperative diabetes mellitus. Duct dilation alone was neither correlated with exocrine nor with endocrine function loss. Conclusion: The majority of patients develop severe exocrine pancreatic insufficiency after pancreatoduodenectomy. The extent of exocrine pancreatic insufficiency is strongly correlated with preoperative fibrosis. The loss of endocrine tissue does not correlate with postoperative diabetes mellitus. Preoperative dilation of the pancreatic duct per se does not predict exocrine or endocrine pancreatic insufficiency postoperatively. Copyrigh

    Staphylococcus aureus sortase a-mediated incorporation of peptides: Effect of peptide modification on incorporation

    Get PDF
    The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall

    Ethnicity, schooling, and merit in the Netherlands

    Get PDF
    We examine to what extent ethnicity affects academic ability measured in the first year of secondary school and secondary school type in the Netherlands. We focus on second-generation immigrants. The empirical results indicate that academic ability (both in mathematics and language) is not affected by ethnicity, independent of parents’ occupation, education, and resources. On a bivariate level, children of Turkish and Moroccan immigrants in the Netherlands are found relatively often in lower tracks in secondary school. This relationship is fully driven by social class and merit, operationalized as including ability and effort. Moreover, children of Turkish, Surinamese and Antillean migrants are, relative to Dutch children from similar backgrounds and merit, more often found in higher tracks in secondary school. However, given the very skewed distribution of educational attainment of immigrants, it is questionable whether ‘class versus ethnicity models’ can accurately compare achievements of native and immigrant children in the Netherlands

    Abnormalities in reparative function of lung-derived mesenchymal stromal cells in emphysema

    Get PDF
    Mesenchymal stromal cells (MSCs) may provide crucial support in the regeneration of destructed alveolar tissue (emphysema) in COPD. We hypothesized that lung-derived MSCs (LMSCs) from emphysema patients are hampered in their repair capacity, either intrinsically or due to their interaction with the damaged micro-environment. LMSCs were isolated from lung tissue of controls and severe emphysema patients, and characterized at baseline. Additionally, LMSCs were seeded onto control and emphysematous decellularized lung tissue scaffolds and assessed for deposition of extracellular matrix (ECM). We observed no differences in surface markers, differentiation/proliferation potential and expression of ECM genes between control- and COPD-derived LMSCs. Notably, COPD-derived LMSCs displayed lower expression of FGF10 and HGF mRNA, and HGF and decorin protein. When seeded on control decellularized lung tissue scaffolds, control and COPD-derived LMSCs showed no differences in engraftment, proliferation or survival within 2 weeks, with similar ability to deposit new matrix on the scaffolds. Moreover, LMSC numbers and ability to deposit new matrix was not compromised on emphysematous scaffolds. Collectively, our data show that LMSCs from COPD patients compared to controls show less expression of FGF10 mRNA, HGF mRNA and protein and decorin protein, while other features including the mRNA expression of various ECM molecules are unaffected. Furthermore, COPD-derived LMSCs are capable of engraftment, proliferation and functioning on native lung tissue scaffolds. The damaged, emphysematous micro-environment as such does not hamper the potential of LMSCs. Thus, specific intrinsic deficiencies in growth factor production by diseased LMSCs may contribute to impaired alveolar repair in emphysema

    Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania

    No full text
    12 páginas, 7 figuras, 1 tabla -- PAGS nros. 1817-1828Histatin 5 (Hst5) is a human salivary antimicrobial peptide that targets fungal mitochondria. In the human parasitic protozoa Leishmania, the mitochondrial ATP production is essential, as it lacks the bioenergetic switch between glycolysis and oxidative phosphorylation described in some yeasts. On these premises, Hst5 activity was assayed on both stages of its life cycle, promastigotes and amastigotes (LC50=7.3 and 14.4 μM, respectively). In a further step, its lethal mechanism was studied. The main conclusions drawn were as follows: 1) Hst5 causes limited and temporary damage to the plasma membrane of the parasites, as assessed by electron microscopy, depolarization, and entrance of the vital dye SYTOX Green; 2) Hst5 translocates into the cytoplasm of Leishmania in an achiral receptor-independent manner with accumulation into the mitochondrion, as shown by confocal microscopy; and 3) Hst5 produces a bioenergetic collapse of the parasite, caused essentially by the decrease of mitochondrial ATP synthesis through inhibition of F1F0-ATPase, with subsequent fast ATP exhaustion. By using the Hst5 enantiomer, it was found that the key steps of its lethal mechanism involved no chiral recognition. Hst5 thus constitutes the first leishmanicidal peptide with a defined nonstereospecific intracellular target. The prospects of its development, by its own or as a carrier molecule for other leishmanicidal molecules, into a novel anti-Leishmania drug with a preferential subcellular accumulation are discussed.—Luque-Ortega, J. R., van’t Hof, W., Veerman, E. C. I., Saugar, J. M., Rivas, L. The human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in LeishmaniaThis work was supported by research grants from the Spanish Ministries of Education and Science (BIO2003–09056-CO2-02), Consejo Superior de Investigaciones Cientificas (CSIC; PIF 80F0171), Fondo de Investigación Sanitaria (FIS PI06115 and RD 06/0021/0006) to L.R., and Dutch Technology Foundation STW (VTH44.3302) to W.V.H. and E.C.I.V.Peer reviewe

    Histatin-Derived Monomeric and Dimeric Synthetic Peptides Show Strong Bactericidal Activity towards Multidrug-Resistant Staphylococcus aureus In Vivoâ–¿

    No full text
    Homodimerization of histatin-derived peptides generally led to improved bactericidal activity against Staphylococcus aureus in vitro. In vivo, monomers and dimers were equally active in killing bacteria in mice with a soft tissue infection. Altogether, these peptides are promising compounds for the development of novel therapeutics against infections with drug-resistant bacteria

    Amphotericin B- and Fluconazole-Resistant Candida spp., Aspergillus fumigatus, and Other Newly Emerging Pathogenic Fungi Are Susceptible to Basic Antifungal Peptides

    No full text
    The present study shows that a number of basic antifungal peptides, including human salivary histatin 5, a designed histatin analog designated dhvar4, and a peptide from frog skin, PGLa, are active against amphotericin B-resistant Candida albicans, Candida krusei, and Aspergillus fumigatus strains and against a fluconazole-resistant Candida glabrata isolate

    Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation

    Get PDF
    The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall
    corecore