50 research outputs found
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
We perform a general study of the thermodynamic properties of static
electrically charged black hole solutions of nonlinear electrodynamics
minimally coupled to gravitation in three space dimensions. The Lagrangian
densities governing the dynamics of these models in flat space are defined as
arbitrary functions of the gauge field invariants, constrained by some
requirements for physical admissibility. The exhaustive classification of these
theories in flat space, in terms of the behaviour of the Lagrangian densities
in vacuum and on the boundary of their domain of definition, defines twelve
families of admissible models. When these models are coupled to gravity, the
flat space classification leads to a complete characterization of the
associated sets of gravitating electrostatic spherically symmetric solutions by
their central and asymptotic behaviours. We focus on nine of these families,
which support asymptotically Schwarzschild-like black hole configurations, for
which the thermodynamic analysis is possible and pertinent. In this way, the
thermodynamic laws are extended to the sets of black hole solutions of these
families, for which the generic behaviours of the relevant state variables are
classified and thoroughly analyzed in terms of the aforementioned boundary
properties of the Lagrangians. Moreover, we find universal scaling laws (which
hold and are the same for all the black hole solutions of models belonging to
any of the nine families) running the thermodynamic variables with the electric
charge and the horizon radius. These scale transformations form a one-parameter
multiplicative group, leading to universal "renormalization group"-like
first-order differential equations. The beams of characteristics of these
equations generate the full set of black hole states associated to any of these
gravitating nonlinear electrodynamics...Comment: 51 single column pages, 19 postscript figures, 2 tables, GRG tex
style; minor corrections added; final version appearing in General Relativity
and Gravitatio
Effects of interacting networks of cardiovascular risk genes on the risk of type 2 diabetes mellitus (the CODAM study)
Background: Genetic dissection of complex diseases requires innovative approaches for identification of disease-predisposing genes. A well-known example of a human complex disease with a strong genetic component is Type 2 Diabetes Mellitus (T2DM). Methods: We genotyped normal-glucose-tolerant subjects (NGT; n = 54), subjects with an impaired glucose metabolism (IGM; n = 111) and T2DM (n = 142) subjects, in an assay (designed by Roche Molecular Systems) for detection of 68 polymorphisms in 36 cardiovascular risk genes. Using the single-locus logistic regression and the so-called haplotype entropy, we explored the possibility that (1) common pathways underlie development of T2DM and cardiovascular disease which would imply enrichment of cardiovascular risk polymorphisms in "pre-diabetic" (IGM) and diabetic (T2DM) populations- and (2) that gene-gene interactions are relevant for the effects of risk polymorphisms. Results: In single-locus analyses, we showed suggestive association with disturbed glucose metabolism (i.e. subjects who were either IGM or had T2DM), or with T2DM only. Moreover, in the haplotype entropy analysis, we identified a total of 14 pairs of polymorphisms (with a false discovery rate of 0.125) that may confer risk of disturbed glucose metabolism, or T2DM only, as members of interacting networks of genes. We substantiated gene-gene interactions by showing that these interacting networks can indeed identify potential "disease-predisposing allele-combinations". Conclusion: Gene-gene interactions of cardiovascular risk polymorphisms can be detected in prediabetes and T2DM, supporting the hypothesis that common pathways may underlie development of T2DM and cardiovascular disease. Thus, a specific set of risk polymorphisms, when simultaneously present, increases the risk of disease and hence is indeed relevant in the transfer of risk
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches
This is the final version. Available on open access from Copernicus Publications via the DOI in this recordCode and data availability:
Scripts and data are available upon request from the corresponding author.Quantifying the net carbon flux from land use and land cover changes (fLULCC) is critical for understanding the global carbon cycle and, hence, to support climate change mitigation. However, large-scale fLULCC is not directly measurable and has to be inferred from models instead, such as semi-empirical bookkeeping models and process-based dynamic global vegetation models (DGVMs). By definition, fLULCC estimates are not directly comparable between these two different model types. As an important example, DGVM-based fLULCC in the annual global carbon budgets is estimated under transient environmental forcing and includes the socalled loss of additional sink capacity (LASC). The LASC results from the impact of environmental changes on land carbon storage potential of managed land compared to potential vegetation and accumulates over time, which is not captured in bookkeeping models. The fLULCC from transient DGVM simulations, thus, strongly depends on the timing of land use and land cover changes mainly because LASC accumulation is cut off at the end of the simulated period. To estimate the LASC, the fLULCC from pre-industrial DGVM simulations, which is independent of changing environmental conditions, can be used. Additionally, DGVMs using constant present-day environmental forcing enable an approximation of bookkeeping estimates. Here, we analyse these three DGVM-derived fLULCC estimations (under transient, pre-industrial, and present-day forcing) for 12 models within 18 regions and quantify their differences as well as climate-and CO2-induced components and compare them to bookkeeping estimates. Averaged across the models, we find a global fLULCC (under transient conditions) of 2:00:6 PgC yr1 for 2009-2018, of which 40% are attributable to the LASC (0:80:3 PgC yr1). From 1850 onward, the fLULCC accumulated to 18956 PgC with 4015 PgC from the LASC. Around 1960, the accumulating nature of the LASC causes global transient fLULCC estimates to exceed estimates under presentday conditions, despite generally increased carbon stocks in the latter. Regional hotspots of high cumulative and annual LASC values are found in the USA, China, Brazil, equatorial Africa, and Southeast Asia, mainly due to deforestation for cropland. Distinct negative LASC estimates in Europe (early reforestation) and from 2000 onward in the Ukraine (recultivation of post-Soviet abandoned agricultural land), indicate that fLULCC estimates in these regions are lower in transient DGVM compared to bookkeeping approaches. Our study unravels the strong dependence of fLULCC estimates on the time a certain land use and land cover change event happened to occur and on the chosen time period for the forcing of environmental conditions in the underlying simulations. We argue for an approach that provides an accounting of the fLULCC that is more robust against these choices, for example by estimating a mean DGVM ensemble fLULCC and LASC for a defined reference period and homogeneous environmental changes (CO2 only)