607 research outputs found

    Robertson-Walker fluid sources endowed with rotation characterised by quadratic terms in angular velocity parameter

    Full text link
    Einstein's equations for a Robertson-Walker fluid source endowed with rotation Einstein's equations for a Robertson-Walker fluid source endowed with rotation are presented upto and including quadratic terms in angular velocity parameter. A family of analytic solutions are obtained for the case in which the source angular velocity is purely time-dependent. A subclass of solutions is presented which merge smoothly to homogeneous rotating and non-rotating central sources. The particular solution for dust endowed with rotation is presented. In all cases explicit expressions, depending sinusoidally on polar angle, are given for the density and internal supporting pressure of the rotating source. In addition to the non-zero axial velocity of the fluid particles it is shown that there is also a radial component of velocity which vanishes only at the poles. The velocity four-vector has a zero component between poles

    Noise performance of magneto-inductive cables

    Get PDF
    Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during 1H MRI at 7 T, and find noise figures of 2.3–2.8 dB/m, together with losses of 3.0–3.9 dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables

    Correcting a bias in a climate model with an augmented emulator

    Get PDF
    This is the final version. Available from Copernicus Publications via the DOI in this record. A key challenge in developing flagship climate model configurations is the process of setting uncertain input parameters at values that lead to credible climate simulations. Setting these parameters traditionally relies heavily on insights from those involved in parameterisation of the underlying climate processes. Given the many degrees of freedom and computational expense involved in evaluating such a selection, this can be imperfect leaving open questions about whether any subsequent simulated biases result from mis-set parameters or wider structural model errors (such as missing or partially parameterised processes). Here, we present a complementary approach to identifying plausible climate model parameters, with a method of bias correcting subcomponents of a climate model using a Gaussian process emulator that allows credible values of model input parameters to be found even in the presence of a significant model bias. A previous study (McNeall et al., 2016) found that a climate model had to be run using land surface input parameter values from very different, almost non-overlapping, parts of parameter space to satisfactorily simulate the Amazon and other forests respectively. As the forest fraction of modelled non-Amazon forests was broadly correct at the default parameter settings and the Amazon too low, that study suggested that the problem most likely lay in the model's treatment of non-plant processes in the Amazon region. This might be due to modelling errors such as missing deep rooting in the Amazon in the land surface component of the climate model, to a warm-dry bias in the Amazon climate of the model or a combination of both. In this study, we bias correct the climate of the Amazon in the climate model from McNeall et al. (2016) using an "augmented" Gaussian process emulator, where temperature and precipitation, variables usually regarded as model outputs, are treated as model inputs alongside land surface input parameters. A sensitivity analysis finds that the forest fraction is nearly as sensitive to climate variables as it is to changes in its land surface parameter values. Bias correcting the climate in the Amazon region using the emulator corrects the forest fraction to tolerable levels in the Amazon at many candidates for land surface input parameter values, including the default ones, and increases the valid input space shared with the other forests. We need not invoke a structural model error in the land surface model, beyond having too dry and hot a climate in the Amazon region. The augmented emulator allows bias correction of an ensemble of climate model runs and reduces the risk of choosing poor parameter values because of an error in a subcomponent of the model. We discuss the potential of the augmented emulator to act as a translational layer between model subcomponents, simplifying the process of model tuning when there are compensating errors and helping model developers discover and prioritise model errors to target.Alan Turing Institut

    Slowly, rotating non-stationary, fluid solutions of Einstein's equations and their match to Kerr empty space-time

    Get PDF
    A general class of solutions of Einstein's equation for a slowly rotating fluid source, with supporting internal pressure, is matched using Lichnerowicz junction conditions, to the Kerr metric up to and including first order terms in angular speed parameter. It is shown that the match applies to any previously known non-rotating fluid source made to rotate slowly for which a zero pressure boundary surface exists. The method is applied to the dust source of Robertson-Walker and in outline to an interior solution due to McVittie describing gravitational collapse. The applicability of the method to additional examples is transparent. The differential angular velocity of the rotating systems is determined and the induced rotation of local inertial frame is exhibited

    Enhanced Geometry Fluctuations in Minkowski and Black Hole Spacetimes

    Full text link
    We will discuss selected physical effects of spacetime geometry fluctuations, especially the operational signatures of geometry fluctuations and their effects on black hole horizons. The operational signatures which we discuss involve the effects of the fluctuations on images, and include luminosity variations, spectral line broadening and angular blurring. Our main interest will be in black hole horizon fluctuations, especially horizon fluctuations which have been enhanced above the vacuum level by gravitons or matter in squeezed states. We investigate whether these fluctuations can alter the thermal character of a black hole. We find that this thermal character is remarkably robust, and that Hawking's original derivation using transplanckian modes does not seem to be sensitive even to enhanced horizon fluctuations.Comment: 13 pages, 3 figures, based on a talk presented at the Peyresq 12 worksho

    Dirty black holes: Entropy versus area

    Full text link
    Considerable interest has recently been expressed in the entropy versus area relationship for ``dirty'' black holes --- black holes in interaction with various classical matter fields, distorted by higher derivative gravity, or infested with various forms of quantum hair. In many cases it is found that the entropy is simply related to the area of the event horizon: S = k A_H/(4\ell_P^2). For example, the ``entropy = (1/4) area'' law *holds* for: Schwarzschild, Reissner--Nordstrom, Kerr--Newman, and dilatonic black holes. On the other hand, the ``entropy = (1/4) area'' law *fails* for: various types of (Riemann)^n gravity, Lovelock gravity, and various versions of quantum hair. The pattern underlying these results is less than clear. This paper systematizes these results by deriving a general formula for the entropy: S = {k A_H/(4\ell_P^2)} + {1/T_H} \int_\Sigma [rho - {L}_E ] K^\mu d\Sigma_\mu + \int_\Sigma s V^\mu d\Sigma_\mu. (K^\mu is the timelike Killing vector, V^\mu the four velocity of a co--rotating observer.) If no hair is present the validity of the ``entropy = (1/4) area'' law reduces to the question of whether or not the Lorentzian energy density for the system under consideration is formally equal to the Euclideanized Lagrangian. ****** To appear in Physical Review D 15 July 1993 ****** [Stylistic changes, minor typos fixed, references updated, discussion of the Born-Infeld system excised]Comment: plain LaTeX, 17 pages, minor revision

    Looking the void in the eyes - the kSZ effect in LTB models

    Get PDF
    As an alternative explanation of the dimming of distant supernovae it has recently been advocated that we live in a special place in the Universe near the centre of a large void described by a Lemaitre-Tolman-Bondi (LTB) metric. The Universe is no longer homogeneous and isotropic and the apparent late time acceleration is actually a consequence of spatial gradients in the metric. If we did not live close to the centre of the void, we would have observed a Cosmic Microwave Background (CMB) dipole much larger than that allowed by observations. Hence, until now it has been argued, for the model to be consistent with observations, that by coincidence we happen to live very close to the centre of the void or we are moving towards it. However, even if we are at the centre of the void, we can observe distant galaxy clusters, which are off-centre. In their frame of reference there should be a large CMB dipole, which manifests itself observationally for us as a kinematic Sunyaev-Zeldovich (kSZ) effect. kSZ observations give far stronger constraints on the LTB model compared to other observational probes such as Type Ia Supernovae, the CMB, and baryon acoustic oscillations. We show that current observations of only 9 clusters with large error bars already rule out LTB models with void sizes greater than approximately 1.5 Gpc and a significant underdensity, and that near future kSZ surveys like the Atacama Cosmology Telescope, South Pole Telescope, APEX telescope, or the Planck satellite will be able to strongly rule out or confirm LTB models with giga parsec sized voids. On the other hand, if the LTB model is confirmed by observations, a kSZ survey gives a unique possibility of directly reconstructing the expansion rate and underdensity profile of the void.Comment: 20 pages, 9 figures, submitted to JCA

    Detailed balance in Horava-Lifshitz gravity

    Full text link
    We study Horava-Lifshitz gravity in the presence of a scalar field. When the detailed balance condition is implemented, a new term in the gravitational sector is added in order to maintain ultraviolet stability. The four-dimensional theory is of a scalar-tensor type with a positive cosmological constant and gravity is nonminimally coupled with the scalar and its gradient terms. The scalar field has a double-well potential and, if required to play the role of the inflation, can produce a scale-invariant spectrum. The total action is rather complicated and there is no analog of the Einstein frame where Lorentz invariance is recovered in the infrared. For these reasons it may be necessary to abandon detailed balance. We comment on open problems and future directions in anisotropic critical models of gravity.Comment: 10 pages. v2: discussion expanded and improved, section on generalizations added, typos corrected, references added, conclusions unchange

    Rotating Solution of Einstein-Maxwell Dilaton Gravity with Unusual Asymptotics

    Full text link
    We study electrically charged, dilaton black holes, which possess infinitesimal angular momentum in the presence of one or two Liouville type potentials. These solutions are neither asymptotically flat nor (anti)-de Sitter. Some properties of the solutions are discussed.Comment: 11 pages, Accepted (Int. J. Theor. Phys.

    Gauss-Bonnet Black Holes in AdS Spaces

    Full text link
    We study thermodynamic properties and phase structures of topological black holes in Einstein theory with a Gauss-Bonnet term and a negative cosmological constant. The event horizon of these topological black holes can be a hypersurface with positive, zero or negative constant curvature. When the horizon is a zero curvature hypersurface, the thermodynamic properties of black holes are completely the same as those of black holes without the Gauss-Bonnet term, although the two black hole solutions are quite different. When the horizon is a negative constant curvature hypersurface, the thermodynamic properties of the Gauss-Bonnet black holes are qualitatively similar to those of black holes without the Gauss-Bonnet term. When the event horizon is a hypersurface with positive constant curvature, we find that the thermodynamic properties and phase structures of black holes drastically depend on the spacetime dimension dd and the coefficient of the Gauss-Bonnet term: when d≥6d\ge 6, the properties of black hole are also qualitatively similar to the case without the Gauss-Bonnet term, but when d=5d=5, a new phase of locally stable small black hole occurs under a critical value of the Gauss-Bonnet coefficient, and beyond the critical value, the black holes are always thermodynamically stable. However, the locally stable small black hole is not globally preferred, instead a thermal anti-de Sitter space is globally preferred. We find that there is a minimal horizon radius, below which the Hawking-Page phase transition will not occur since for these black holes the thermal anti de Sitter space is always globally preferred.Comment: Revtex, 17 pages with 9 eps figures, v2: section II removed and references added, the version to appear in PR
    • …
    corecore