1,198 research outputs found

    Robertson-Walker fluid sources endowed with rotation characterised by quadratic terms in angular velocity parameter

    Full text link
    Einstein's equations for a Robertson-Walker fluid source endowed with rotation Einstein's equations for a Robertson-Walker fluid source endowed with rotation are presented upto and including quadratic terms in angular velocity parameter. A family of analytic solutions are obtained for the case in which the source angular velocity is purely time-dependent. A subclass of solutions is presented which merge smoothly to homogeneous rotating and non-rotating central sources. The particular solution for dust endowed with rotation is presented. In all cases explicit expressions, depending sinusoidally on polar angle, are given for the density and internal supporting pressure of the rotating source. In addition to the non-zero axial velocity of the fluid particles it is shown that there is also a radial component of velocity which vanishes only at the poles. The velocity four-vector has a zero component between poles

    Dynamical coherent states and physical solutions of quantum cosmological bounces

    Full text link
    A new model is studied which describes the quantum behavior of transitions through an isotropic quantum cosmological bounce in loop quantum cosmology sourced by a free and massless scalar field. As an exactly solvable model even at the quantum level, it illustrates properties of dynamical coherent states and provides the basis for a systematic perturbation theory of loop quantum gravity. The detailed analysis is remarkably different from what is known for harmonic oscillator coherent states. Results are evaluated with regard to their implications in cosmology, including a demonstration that in general quantum fluctuations before and after the bounce are unrelated. Thus, even within this solvable model the condition of classicality at late times does not imply classicality at early times before the bounce without further assumptions. Nevertheless, the quantum state does evolve deterministically through the bounce.Comment: 30 pages, 3 figure

    Operator ordering and consistency of the wavefunction of the Universe

    Get PDF
    We demonstrate in the context of the minisuperspace model consisting of a closed Friedmann-Robertson-Walker universe coupled to a scalar field that Vilenkin's tunneling wavefunction can only be consistently defined for particular choices of operator ordering in the Wheeler-DeWitt equation. The requirement of regularity of the wavefunction has the particular consequence that the probability amplitude, which has been used previously in the literature in discussions of issues such as the prediction of inflation, is likewise ill-defined for certain choices of operator ordering with Vilenkin's boundary condition. By contrast, the Hartle-Hawking no-boundary wavefunction can be consistently defined within these models, independently of operator ordering. The significance of this result is discussed within the context of the debate about the predictions of semiclassical quantum cosmology. In particular, it is argued that inflation cannot be confidently regarded as a "prediction" of the tunneling wavefunction, for reasons similar to those previously invoked in the case of the no-boundary wavefunction. A synthesis of the no-boundary and tunneling approaches is argued for.Comment: 9 pages, epsf, revTeX-3.1, 1 figure. In revised version (v2) a new section etc with additional arguments increases the length of paper by 3 pages of Physical Review; several references added. v3: small typos fixe

    Hubble flow variance and the cosmic rest frame

    Get PDF
    We characterize the radial and angular variance of the Hubble flow in the COMPOSITE sample of 4534 galaxies, on scales in which much of the flow is in the nonlinear regime. With no cosmological assumptions other than the existence of a suitably averaged linear Hubble law, we find with decisive Bayesian evidence (ln B >> 5) that the Hubble constant averaged in independent spherical radial shells is closer to its asymptotic value when referred to the rest frame of the Local Group, rather than the standard rest frame of the Cosmic Microwave Background. An exception occurs for radial shells in the range 40/h-60/h Mpc. Angular averages reveal a dipole structure in the Hubble flow, whose amplitude changes markedly over the range 32/h-62/h Mpc. Whereas the LG frame dipole is initially constant and then decreases significantly, the CMB frame dipole initially decreases but then increases. The map of angular Hubble flow variation in the LG rest frame is found to coincide with that of the residual CMB temperature dipole, with correlation coefficient -0.92. These results are difficult to reconcile with the standard kinematic interpretation of the motion of the Local Group in response to the clustering dipole, but are consistent with a foreground non-kinematic anisotropy in the distance-redshift relation of 0.5% on scales up to 65/h Mpc. Effectively, the differential expansion of space produced by nearby nonlinear structures of local voids and denser walls and filaments cannot be reduced to a local boost. This hypothesis suggests a reinterpretation of bulk flows, which may potentially impact on calibration of supernovae distances, anomalies associated with large angles in the CMB anisotropy spectrum, and the dark flow inferred from the kinematic Sunyaev-Zel'dovich effect. It is consistent with recent studies that find evidence for a non-kinematic dipole in the distribution of distant radio sources.Comment: 37 pages, 9 tables, 13 figures; v2 adds extensive new analysis (including additional subsections, tables, figures); v3 adds a Monte Carlo analysis (with additional table, figure) which further tightens the statistical robustness of the dipole results; v4 adds further clarifications, small corrections, references and discussion of Planck satellite results; v5 typos fixed, matches published versio

    Black Hole Area in Brans-Dicke Theory

    Full text link
    We have shown that the dynamics of the scalar field ϕ(x)=G1(x)"\phi (x)= ``G^{-1}(x)" in Brans-Dicke theories of gravity makes the surface area of the black hole horizon {\it oscillatory} during its dynamical evolution. It explicitly explains why the area theorem does not hold in Brans-Dicke theory. However, we show that there exists a certain non-decreasing quantity defined on the event horizon which is proportional to the black hole entropy for the case of stationary solutions in Brans-Dicke theory. Some numerical simulations have been demonstrated for Oppenheimer-Snyder collapse in Brans-Dicke theory.Comment: 12 pages, latex, 5 figures, epsfig.sty, some statements clarified and two references added, to appear in Phys. Rev.

    Spherically symmetric solutions of a (4+n)-dimensional Einstein-Yang-Mills model with cosmological constant

    Full text link
    We construct solutions of an Einstein-Yang-Mills system including a cosmological constant in 4+n space-time dimensions, where the n-dimensional manifold associated with the extra dimensions is taken to be Ricci flat. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric Ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant and zero gauge fields exist. We give the analytic solutions available in this model. These are ``embedded'' abelian solutions with a diverging size of the manifold associated with the extra n dimensions. Depending on the choice of parameters, these latter solutions either represent naked singularities or they possess a single horizon. We also present solutions of the effective 4-dimensional Einstein-Yang-Mills-Higgs-dilaton model, where the higher dimensional cosmological constant induces a Liouville-type potential. The solutions are non-abelian solutions with diverging Higgs fields, which exist only up to a maximal value of the cosmological constant.Comment: 13 Tex-pages, 2 eps-figures; discussions changed; some points clarifie

    The impact of structural error on parameter constraint in a climate model

    Get PDF
    Uncertainty in the simulation of the carbon cycle contributes significantly to uncertainty in the projections of future climate change. We use observations of forest fraction to constrain carbon cycle and land surface input parameters of the global climate model FAMOUS, in the presence of an uncertain structural error. Using an ensemble of climate model runs to build a computationally cheap statistical proxy (emulator) of the climate model, we use history matching to rule out input parameter settings where the corresponding climate model output is judged sufficiently different from observations, even allowing for uncertainty. Regions of parameter space where FAMOUS best simulates the Amazon forest fraction are incompatible with the regions where FAMOUS best simulates other forests, indicating a structural error in the model. We use the emulator to simulate the forest fraction at the best set of parameters implied by matching the model to the Amazon, Central African, South East Asian, and North American forests in turn. We can find parameters that lead to a realistic forest fraction in the Amazon, but that using the Amazon alone to tune the simulator would result in a significant overestimate of forest fraction in the other forests. Conversely, using the other forests to tune the simulator leads to a larger underestimate of the Amazon forest fraction. We use sensitivity analysis to find the parameters which have the most impact on simulator output and perform a history-matching exercise using credible estimates for simulator discrepancy and observational uncertainty terms. We are unable to constrain the parameters individually, but we rule out just under half of joint parameter space as being incompatible with forest observations. We discuss the possible sources of the discrepancy in the simulated Amazon, including missing processes in the land surface component and a bias in the climatology of the Amazon.This work was supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101). Doug McNeall was supported on secondment to Exeter University by the Met Office Academic Partnership (MOAP) for part of the work. Jonny Williams was supported by funding from Statoil ASA, Norwa

    On-brane data for braneworld stars

    Get PDF
    Stellar structure in braneworlds is markedly different from that in ordinary general relativity. As an indispensable first step towards a more general analysis, we completely solve the ``on brane'' 4-dimensional Gauss and Codazzi equations for an arbitrary static spherically symmetric star in a Randall--Sundrum type II braneworld. We then indicate how this on-brane boundary data should be propagated into the bulk in order to determine the full 5-dimensional spacetime geometry. Finally, we demonstrate how this procedure can be generalized to solid objects such as planets.Comment: 5 pages, RevTeX4, v2: Main algorithm and results substantially simplified, further discussion and references adde
    corecore