2,641 research outputs found

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    Analytic and Numerical Aspects of the Nonsingular Laplacian Representation of the Asymptotic Part of the Layered-Medium Green Function in the Mixed Potential Formulation

    Get PDF
    We report on developments in the evaluation of matrix elements of the electric and magnetic field operators involving the asymptotic (large transverse wave-number or small transverse distances) components of the mixed-potential Green's function of a layered medium. Subtracting these asymptotic terms significantly accelerates numerical computation of the Sommerfeld-type integrals required in constructing Green's function and then the matrix elements [1]

    New Simplified Analytic Expressions for the Matrix Elements of the Asymptotic Part of the Layered Medium Green Function in the Mixed Potential Formulation

    Get PDF
    We report new developments in the analytical evaluation of the near-field contribution to the matrix elements of the electric and magnetic field operators for planar conducting structures embedded in a layered medium. The method is applicable to Rao-Wilton-Glisson (RWG) basis functions supported on parallel interfaces in the medium. Our method is an extension of the approach described in [1] of representing a Green function as a two-dimensional Laplacian of an auxiliary function. Such Laplacian representations can be obtained for the asymptotic forms of the Green functions, which are being subtracted in order to regularize the behavior of the Sommerfeld-type integrals. Matrix elements resulting from these asymptotic forms, given originally as quadruple surface integrals with singular integrands, are then reduced to double contour integrals over the perimeters of the surface elements, involving simple closed-form non-singular auxiliary functions

    Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    Get PDF
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm2^2, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.Comment: 4pages, 3figures, 13th Pisa Meeting on Advanced Detector

    Sny Magill Nonpoint Source Pollution Monitoring Project : final report

    Get PDF
    https://ir.uiowa.edu/igs_tis/1047/thumbnail.jp

    Design, Implementation and First Measurements with the Medipix Neutron Camera in CMS

    Full text link
    The Medipix detector is the first device dedicated to measuring mixed-field radiation in the CMS cavern and able to distinguish between different particle types. Medipix2-MXR chips bump bonded to silicon sensors with various neutron conversion layers developed by the IEAP CTU in Prague were successfully installed for the 2008 LHC start-up in the CMS experimental and services caverns to measure the flux of various particle types, in particular neutrons. They have operated almost continuously during the 2010 run period, and the results shown here are from the proton run between the beginning of July and the end of October 2010. Clear signals are seen and different particle types have been observed during regular LHC luminosity running, and an agreement in the measured flux rate is found with the simulations. These initial results are promising, and indicate that these devices have the potential for further and future LHC and high energy physics applications as radiation monitoring devices for mixed field environments, including neutron flux monitoring. Further extensions are foreseen in the near future to increase the performance of the detector and its coverage for monitoring in CMS.Comment: 15 pages, 16 figures, submitted to JINS

    A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    Full text link
    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few ÎŒ\mus with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 σ\sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ\sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.Comment: 28 page

    Joining the conspiracy? Negotiating ethics and emotions in researching (around) AIDS in southern Africa

    Get PDF
    AIDS is an emotive subject, particularly in southern Africa. Among those who have been directly affected by the disease, or who perceive themselves to be personally at risk, talking about AIDS inevitably arouses strong emotions - amongst them fear, distress, loss and anger. Conventionally, human geography research has avoided engagement with such emotions. Although the ideal of the detached observer has been roundly critiqued, the emphasis in methodological literature on 'doing no harm' has led even qualitative researchers to avoid difficult emotional encounters. Nonetheless, research is inevitably shaped by emotions, not least those of the researchers themselves. In this paper, we examine the role of emotions in the research process through our experiences of researching the lives of 'Young AIDS migrants' in Malawi and Lesotho. We explore how the context of the research gave rise to the production of particular emotions, and how, in response, we shaped the research, presenting a research agenda focused more on migration than AIDS. This example reveals a tension between universalised ethics expressed through ethical research guidelines that demand informed consent, and ethics of care, sensitive to emotional context. It also demonstrates how dualistic distinctions between reason and emotion, justice and care, global and local are unhelpful in interpreting the ethics of research practice

    Fish Species of Greatest Conservation Need in Wadeable Iowa Streams: Current Status and Effectiveness of Aquatic Gap Program Distribution Models

    Get PDF
    Effective conservation of fish species of greatest conservation need (SGCN) requires an understanding of species– habitat relationships and distributional trends. Thus, modeling the distribution of fish species across large spatial scales may be a valuable tool for conservation planning. Our goals were to evaluate the status of 10 fish SGCN in wadeable Iowa streams and to test the effectiveness of IowaAquatic Gap Analysis Project (IAGAP) species distribution models. We sampled fish assemblages from 86 wadeable stream segments in the Mississippi River drainage of Iowa during 2009 and 2010 to provide contemporary, independent fish species presence–absence data. The frequencies of occurrence in stream segments where species were historically documented varied from 0.0% for redfin shiner Lythrurus umbratilis to 100.0% for American brook lamprey Lampetra appendix, with a mean of 53.0%, suggesting that the status of Iowa fish SGCN is highly variable. Cohen’s kappa values and other model performance measures were calculated by comparing field-collected presence–absence data with IAGAP model–predicted presences and absences for 12 fish SGCN. Kappa values varied from 0.00 to 0.50, with a mean of 0.15. The models only predicted the occurrences of banded darter Etheostoma zonale, southern redbelly dace Phoxinus erythrogaster, and longnose dace Rhinichthys cataractae more accurately than would be expected by chance. Overall, the accuracy of the twelve models was low, with a mean correct classification rate of 58.3%. Poor model performance probably reflects the difficulties associated with modeling the distribution of rare species and the inability of the large-scale habitat variables used in IAGAP models to explain the variation in fish species occurrences. Our results highlight the importance of quantifying the confidence in species distribution model predictions with an independent data set and the need for long-term monitoring to better understand the distributional trends and habitat associations of fish SGCN
    • 

    corecore